Paper | Title | Page |
---|---|---|
WEPA62 | Design and Commissioning of the ASU CXLS RF System | 764 |
|
||
Funding: This work was supported in part by NSF award #1935994. The Compact X-ray Light Source (CXLS) uses inverse Compton scattering of a high intensity laser off a bright, relativistic electron beam to produce hard x-rays. The accelerator consists of a photoinjector and three standing-wave linac sections, which are powered by two 6-MW klystrons operating at 9.3 GHz with a repetition rate of 1 kHz. This paper presents the design and commissioning of the CXLS RF systems consisting of both high-power RF structures and low-power diagnostics. The high-power RF system is comprised of two solid state amplifier and klystron modulator sets, various directional couplers, and three phase shifter power dividers. The low-level system consists of a master oscillator and laser phase lock, IQ modulators, IQ demodulators, and downconverters. We present measurements of the low-level and high-power RF phase and amplitude stability showing RMS timing jitter in the tens of femtoseconds and amplitude jitter below 0.1% at high power. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA62 | |
About • | Received ※ 29 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 19 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA63 | Extensions of the Complex (IQ) Baseband RF Cavity Model Including RF Source and Beam Interactions | 767 |
|
||
Funding: This work was supported in part by NSF award #1935994. This paper extends prior work describing a complex envelope (i.e., baseband) dynamic model of excited accelerator RF cavities, including the effects of frequency detuning, beam loading, reflections, multiple drive ports, and parasitic modes. This model is presented here in closed-form transfer function and state-variable realizations, which may be more appropriate for analytic purposes. Several example simulations illustrate the detailed insight into RF system behavior afforded by this model. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA63 | |
About • | Received ※ 28 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 15 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA64 | Design and Commissioning of the ASU CXLS Machine Protection System | 770 |
|
||
Funding: This work was supported in part by NSF award #1935994. To protect against fault conditions in the high-power RF transport and accelerating structures of the Arizona State University (ASU) Compact X-Ray Light Source (CXLS), the Machine Protection System (MPS) extinguishes the 6.5-MW RF energy sources within approximately 50 ns of the fault event. In addition, each fault is localized and reported remotely via USB for operational and maintenance purposes. This paper outlines the requirements, design, and performance of the MPS applied on the CXLS. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA64 | |
About • | Received ※ 13 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 12 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |