Paper | Title | Page |
---|---|---|
TUPA21 | Hydrodynamic and Beam Dynamic Simulations of Ultra-Low Emittance Whole Beam Dumps in the Advanced Photon Source Storage Ring | 390 |
|
||
Funding: Work supported by Accelerator Science and Technology LDRD Project 2021-0119 and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The Advanced Photon Source Upgrade will use a multi-bend achromatic lattice to reduce vertical and horizontal beam emittances by one- and two-orders of magnitude respectively; in addition operating current will double. The resulting electron beam will be capable of depositing more than 150 MGy on machine protection collimators creating high-energy-density conditions. Work is underway to couple the beam dynamics code Elegant with the particle-matter interaction program MARS and the magnetohydrodynamics code FLASH to model the effects of whole beam dumps on the collimators. Loss distributions from Elegant are input to MARS which provide dose maps to FLASH. We also examine the propagation of downstream shower components after the beam interacts with the collimator. Electrons and positrons are tracked to determine locations of beam loss. Beam dump experiments conducted in the APS storage-ring, generated dose levels as high as 30 MGy resulting in severe damage to the collimator surfaces with melting in the bulk. The deformed collimator surface may lead to beam deposition in unexpected locations. A fan-out kicker is planned to mitigate the effects of whole beam dumps on the collimators. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA21 | |
About • | Received ※ 02 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 10 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA22 | Measurements of Bunch Length in the Advanced Photon Source Booster Synchrotron | 394 |
|
||
Funding: Work supported by the U.S. D.O.E.,Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02- 06CH11357. A bunch duration monitor (BDM) was installed at the end of a synchrotron light monitor (SLM) port in the Advanced Photon Source (APS) booster synchrotron. The BDM is based on a fast Hamamatsu metal-semiconductor-metal detector with nominal rise and fall times of 30 ps. Bunch length data is especially important as the bunch charge will be raised from 3 nC, used in the existing machine, to as much as 18 nC for APS-Upgrade operation. During preliminary high-charge studies, the SLM image is observed to move over a period of minutes while the BDM signal intensity varies; the motion is likely due to thermal loading of the in-tunnel synchrotron light mirror. Work is underway to stabilize the position using a simple feedback system and motorized mirror mount, as well as a new synchrotron light mirror assembly with improved thermal load handling. The feedback system will maintain optical alignment on the BDM at an optimum position based on the SLM centroid location. The optical layout and feedback system will be presented along with preliminary bunch length data. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA22 | |
About • | Received ※ 04 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 09 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA23 | First Beam Results Using the 10-kW Harmonic Rf Solid-State Amplifier for the APS Particle Accumulator Ring | 398 |
|
||
Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. The Advanced Photon Source (APS) particle accumulator ring (PAR) was designed to accumulate linac pulses into a single bunch using a fundamental radio frequency (rf) system, and longitudinally compress the beam using a harmonic rf system prior to injection into the booster. The APS Upgrade injectors will need to supply full-current bunch replacement with high single-bunch charge for swap-out injection in the new storage ring. Significant bunch lengthening is observed in the PAR at high charge, which negatively affects beam capture in the booster. Predictions showed that the bunch length could be compressed to better match the booster acceptance using a combination of higher beam energy and higher harmonic gap voltage. A new 10-kW harmonic rf solid-state amplifier (SSA) was installed in 2021 to raise the gap voltage and improve bunch compression. The SSA has been operating reliably. Initial results show that the charge-dependent bunch lengthening in PAR with higher gap voltage agrees qualitatively with predictions. A tool was written to automate bunch length data acquisition. Future plans to increase the beam energy, which makes the SSA more effective, will also be summarized. |
||
Poster TUPA23 [2.477 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA23 | |
About • | Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 07 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA36 | The Advanced Photon Source Linac Extension Area Beamline | 430 |
|
||
Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The Linac Extension Area at the Advanced Photon Source is a flexible beamline area for testing accelerator components and techniques. Driven by the Advanced Photon Source electron linac equipped with a photocathode RF electron gun, the Linac Extension Area houses a 12 m long beamline. The beamline is furnished with YAG screens, BPMs and a magnetic spectrometer to assist with characterization of beam emittance and energy spread. A 1.4 m long insertion in the middle of the beamline is provided for the installation of a device under test. The beamline is expected to be available soon for testing accelerator components and techniques using round and flat electron beams over an energy range 150-450 MeV. In the present work, we describe this beamline and summarise the main beam parameters. |
||
Poster TUPA36 [0.892 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA36 | |
About • | Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |