Author: Dudnikov, V.G.
Paper Title Page
TUPA04 Sheet Electron Probe for Beam Tomography 354
 
  • V.G. Dudnikov, M.A. Cummings, G. Dudnikova
    Muons, Inc, Illinois, USA
 
  Funding: Supported by DOE SBIR grant # DE-SC0021581.
We propose a new approach to electron beam tomography: we will generate a pulsed sheet of electrons. As the ion beam bunches pass through the sheet, they cause distortions in the distribution of sheet electrons arriving at a luminescent screen with a CCD device on the other side of the beam; these sheet electrons are interpreted to give a continuous measurement of the beam profile. The apparatus to generate the sheet beam is a strip cathode, which, compared to the scanning electron beam probe, is smaller, has simpler design and less expensive manufacturing, has better magnetic shielding, has higher sensitivity and higher resolution, has better accuracy of measurement, and has better time resolution.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA04  
About • Received ※ 22 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA05 An H Injector for the ESS Storage Ring 357
 
  • V.G. Dudnikov, M.A. Cummings, M. Popovic
    Muons, Inc, Illinois, USA
 
  H charge exchange (stripping) injection into the European Spallation neutron Source (ESS) Storage Ring requires a 90 mA H ion source that delivers 2.9 ms pulses at 14 Hz repetition rate (duty factor ~4%) that can be extended to 28 Hz (df 8%). This can be achieved with a magnetron surface plasma H source (SPS) with active cathode and anode cooling. The Brookhaven National Laboratory (BNL) magnetron SPS can produce an H beam current of 100 mA with about 2 kW discharge power and can operate up to 0.7 % duty factor (average power 14 W) without active cooling. We describe how active cathode and anode cooling can be applied to the BNL source to increase the average discharge power up to 140 W (df 8%) to satisfy the needs of the ESS. We also describe the use of a short electrostatic LEBT as is used at the Oak Ridge National Laboratory Spallation Neutron Source to improve the beam delivery to the RFQ.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA05  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)