Author: Einstein-Curtis, J.A.
Paper Title Page
MOPA24 LCLS-II and HE Cryomodule Microphonics at CMTF at Fermilab 103
 
  • C. Contreras-Martinez, B.E. Chase, A.T. Cravatta, J.A. Einstein-Curtis, E.R. Harms, J.P. Holzbauer, J.N. Makara, S. Posen, R. Wang
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle
    LBNL, Berkeley, California, USA
 
  Microphonics causes the cavity to detune. This study discusses the microphonics of 16 cryomodules, 14 for LCLS-II and 2 for LCLS-II HE tested at CMTF. The peak detuning, as well as the RMS detuning for each cryomodule, will be discussed. For each cryomodule, the data was taken with enough soaking time to prevent any thermalization effects which can show up in the detuning. Each data capture taken was 30 minutes or longer and sampled at 1 kHz.  
poster icon Poster MOPA24 [1.428 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA24  
About • Received ※ 03 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA55 Facilitating Machine Learning Collaborations Between Labs, Universities, and Industry 164
 
  • J.P. Edelen, D.T. Abell, D.L. Bruhwiler, S.J. Coleman, N.M. Cook, A. Diaw, J.A. Einstein-Curtis, C.C. Hall, M.C. Kilpatrick, B. Nash, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • K.A. Brown
    BNL, Upton, New York, USA
  • S. Calder
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.L. Edelen, B.D. O’Shea, R.J. Roussel
    SLAC, Menlo Park, California, USA
  • C.M. Hoffmann
    ORNL, Oak Ridge, Tennessee, USA
  • E.-C. Huang
    LANL, Los Alamos, New Mexico, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • C. Tennant
    JLab, Newport News, Virginia, USA
 
  It is clear from numerous recent community reports, papers, and proposals that machine learning is of tremendous interest for particle accelerator applications. The quickly evolving landscape continues to grow in both the breadth and depth of applications including physics modeling, anomaly detection, controls, diagnostics, and analysis. Consequently, laboratories, universities, and companies across the globe have established dedicated machine learning (ML) and data-science efforts aiming to make use of these new state-of-the-art tools. The current funding environment in the U.S. is structured in a way that supports specific application spaces rather than larger collaboration on community software. Here, we discuss the existing collaboration bottlenecks and how a shift in the funding environment, and how we develop collaborative tools, can help fuel the next wave of ML advancements for particle accelerators.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA55  
About • Received ※ 10 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 22 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)