Paper | Title | Page |
---|---|---|
MOZE5 | Simulation and Experimental Results of Dielectric Disk Accelerating Structures | 52 |
|
||
Funding: Contract DE-SC0019864 to Euclid Beamlabs LLC. AWA work from U.S. DOE Office of Science under Contract DE-AC02-06CH11357. Chicagoland Accelerator Science Traineeship U.S. DOE award number DE-SC-0020379 A method of decreasing the required footprint of linear accelerators and improving their energy efficiency is to employ Dielectric Disk Accelerators (DDAs) with short RF pulses ( ∼ 9 ns). A DDA is an accelerating structure that utilizes dielectric disks to improve the shunt impedance. Two DDA structures have been designed and tested at the Argonne Wakefield Accelerator. A single cell clamped DDA structure recently achieved an accelerating gradient of 1{02} MV/m. A multi-cell clamped DDA structure has been designed and is being fabricated. Simulation results for this new structure show a 1{08} MV/m accelerating gradient with 400 MW of input power with a high shunt impedance and group velocity. The engineering design has been improved from the single cell structure to ensure consistent clamping over the entire structure. |
||
Slides MOZE5 [9.338 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZE5 | |
About • | Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 21 August 2022 — Issue date ※ 06 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |