Paper | Title | Page |
---|---|---|
MOPA85 | Design of a 185.7 MHz Superconducting RF Photoinjector Quarter-Wave Resonator for the LCLS-II-HE Low Emittance Injector | 245 |
|
||
Funding: Work supported by the U.S. Department of Energy Contract DE-AC02-76SF00515. A 185.7 MHz superconducting quarter-wave resonator (QWR) was designed for the low emittance injector of the Linac Coherent Light Source high energy upgrade (LCLS-II-HE). The cavity was designed to minimize the risk of cathode efficiency degradation due to multipacting or field emission and to operate with a high RF electric field at the cathode for low electron-beam emittance. Cavity design features include: (1) shaping of the cavity wall to reduce the strength of the low-field coaxial multipacting barrier; (2) four ports for electropolishing and high-pressure water rinsing; and (3) a fundamental power coupler (FPC) port located away from the accelerating gap. The design is oriented toward minimizing the risk of particulate contamination and avoid harmful dipole components in the RF field. The ANL 162 MHz FPC design for PIP-II is being adapted for the gun cavity. We will present the RF design of the cavity integrated with the FPC. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA85 | |
About • | Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 30 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA02 | Beam Dynamics Studies on a Low Emittance Injector for LCLS-II-HE | 619 |
|
||
The SLAC High Energy upgrade of LCLS-II (LCLS-II-HE) will double the beam energy to 8 GeV, increasing the XFEL photon energy reach to about 13 keV. The energy reach can be extended to 20 keV if the beam emittance can be halved, which requires a higher gradient electron gun with a lower intrinsic emittance photocathode. To this end, the Low Emittance Injector (LEI) will be built that will run parallel to the existing LCLS-II Injector. The LEI design will be based on a state-of-the-art SRF gun with a 30 MV/m cathode gradient. The main goal is to produce transverse beam emittances of 0.1 mm-mrad for 100 pC bunch charges. This paper describes the beam dynamics studies on the design of the LEI including the simulations and multi-objective genetic algorithm (MOGA) optimizations. Performance with different injector layouts, cathode gradients, bunch charges and cathode mean transverse energies (MTEs) will be presented. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA02 | |
About • | Received ※ 02 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 17 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA03 | Status of the SLAC/MSU SRF Gun Development Project | 623 |
|
||
Funding: US Department of Energy. The LCLS-II-HE project at SLAC is intended to increase the photon energy reach of the LCLS-II FEL to at least 20 keV. In addition to upgrading the undulator system, and increasing the electron beam energy to 8 GeV, the project will also construct a low-emittance injector (LEI) in a new tunnel. To achieve the LEI emittance goals, a low-MTE photocathode will be required, as will on-cathode electric fields up to 50% higher than those achievable in the current LCLS-II photoinjector. The beam source for the LEI will be based around a superconducting quarterwave cavity resonant at 185.7 MHz. A prototype gun is currently being designed and fabricated at the Facility for Rare Isotope Beams (FRIB) at Michigan State University. This paper presents the performance goals for the new gun design, an overview of the prototype development effort, current status, and future plans including fabrication of a "production" gun for the LEI. |
||
Poster WEPA03 [4.510 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA03 | |
About • | Received ※ 21 July 2022 — Revised ※ 28 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 11 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA09 | A Parallel Automatic Simulation Tool for Cavity Shape Optimization | 634 |
|
||
Funding: U.S. Department of Energy under contract No. DE-SC0018715. We present a parallel automatic shape optimization workflow for designing accelerator cavities. The newly developed 3D parallel optimization tool Opt3P based on discrete adjoint methods is used to determine the optimal accelerator cavity shape with the desired spectral response. Initial and updated models, meshes, and design velocities of design parameters for defining the cavity shape are generated with Simmetrix tools for mesh generation (MeshSim), geometry modification and query (GeomSim), and user interface tools (SimModeler). Two shape optimization examples using this automatic simulation workflow will be presented here. One is the TESLA cavity with higher-order-mode (HOM) couplers and the other is a superconducting rf (SRF) gun. The objective for the TESLA cavity is to minimize HOM damping factors and for the SRF gun to minimize the surface electric and magnetic fields while maintaining its operating mode frequency at a prescribed value. The results demonstrate that the automatic simulation tool allows an efficient shape optimization procedure with minimal manual operations. All simulations were performed on the NERSC supercomputer Cori system for solution speedup. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA09 | |
About • | Received ※ 03 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 08 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |