Author: Guo, J.
Paper Title Page
MOZD5 ERL-Based Compact X-Ray FEL 37
 
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Guo, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by UT-Battelle, LLC, under contract DE-AC05-00OR22725, and by Jefferson Science Associates, LLC, under contract DE-AC05-06OR23177
We pro­pose to de­velop an en­ergy-re­cov­ery-linac (ERL)-based X-ray free-elec­tron laser (XFEL). Tak­ing ad­van­tage of the demon­strated high-ef­fi­ciency en­ergy re­cov­ery of the beam power in the ERL, the pro­posed con­cept of­fers the fol­low­ing ben­e­fits: i) re­cir­cu­lat­ing the elec­tron beam through high-gra­di­ent su­per­con­duct­ing RF (SRF) cav­i­ties short­ens the linac, ii) en­ergy re­cov­ery in the SRF linac saves the kly­stron power and re­duces the beam dump power, iii) the high av­er­age beam power pro­duces a high av­er­age pho­ton bright­ness. In ad­di­tion, such a con­cept has the ca­pa­bil­ity of de­liv­er­ing op­ti­mized high-bright­ness CW X-ray FEL per­for­mance at dif­fer­ent en­er­gies with si­mul­ta­ne­ous mul­ti­pole sources. In this paper, we will pre­sent the pre­lim­i­nary re­sults on the study of fea­si­bil­ity, op­tics de­sign and pa­ra­me­ter op­ti­miza­tion of such a de­vice.
 
slides icon Slides MOZD5 [2.870 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZD5  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA72 Preliminary Tests and Beam Dynamics Simulations of a Straight-Merger Beamline 206
 
  • A.A. Al Marzouk, P. Piot, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
  • S.V. Benson, K.E. Deitrick, J. Guo, A. Hutton, G.-T. Park, S. Wang
    JLab, Newport News, Virginia, USA
  • D.S. Doran, G. Ha, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.E. Mitchell, J. Qiang, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: NSF award PHY-1549132 to Cornell University and NIU, U.S. DOE contract DE-AC02-06CH11357 with ANL and DE-AC05-06OR23177 with JLAB.
Beam­lines ca­pa­ble of merg­ing beams with dif­fer­ent en­er­gies are crit­i­cal to many ap­pli­ca­tions re­lated to ad­vanced ac­cel­er­a­tor con­cepts and en­ergy-re­cov­ery linacs (ERLs). In an ERL, a low-en­ergy "fresh" bright bunch is gen­er­ally in­jected into a su­per­con­duct­ing linac for ac­cel­er­a­tion using the fields es­tab­lished by a de­cel­er­ated "spent" beam trav­el­ing on the same axis. A straight-merger sys­tem com­posed of a se­lect­ing cav­ity with a su­per­im­posed di­pole mag­net was pro­posed and re­cently test at AWA. This paper re­ports on the ex­per­i­men­tal re­sults ob­tained so far along with de­tailed beam dy­nam­ics in­ves­ti­ga­tions of the merger con­cept and its abil­ity to con­serve the beam bright­ness as­so­ci­ated with the fresh bunch.
 
poster icon Poster MOPA72 [1.659 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA72  
About • Received ※ 11 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 02 October 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZD6 Manufacturing the Harmonic Kicker Cavity Prototype for the Electron-Ion Collider 601
 
  • S.A. Overstreet, M.W. Bruker, G.A. Grose, J. Guo, J. Henry, G.-T. Park, R.A. Rimmer, H. Wang, R.S. Williams
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177
High-bunch-fre­quency beam-sep­a­ra­tion schemes, such as the in­jec­tion scheme pro­posed for the Rapid Cy­cling Syn­chro­tron at the Elec­tron-Ion Col­lider, de­mand rise and fall times an order of mag­ni­tude below what can re­al­is­ti­cally be ac­com­plished with a stripline kicker. Nanosec­ond-time-scale kick wave­forms can in­stead be ob­tained by Fourier syn­the­sis in a har­mon­i­cally res­o­nant quar­ter-wave ra­dio-fre­quency cav­ity which is op­ti­mized for high shunt im­ped­ance. Orig­i­nally de­vel­oped for the Jef­fer­son Lab Elec­tron-Ion Col­lider (JLEIC) Cir­cu­la­tor Cooler Ring, a hy­po­thet­i­cal 11-pass ring dri­ven by an en­ergy-re­cov­ery linac at Jef­fer­son Lab, our high-power pro­to­type of such a har­monic kicker cav­ity, which op­er­ates at five modes at the same time, will demon­strate the vi­a­bil­ity of this con­cept with a beam test at Jef­fer­son Lab. As the geom­e­try of the cav­ity, tight me­chan­i­cal tol­er­ances, and num­ber of ports com­pli­cate the de­sign and man­u­fac­tur­ing process, spe­cial care must be given to the order of the man­u­fac­tur­ing steps. We pre­sent our ex­pe­ri­ences with the man­u­fac­tura­bil­ity of the pre­sent de­sign, lessons learned, and first RF test re­sults from the pro­to­type.
 
slides icon Slides WEZD6 [12.312 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZD6  
About • Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 18 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA26 197 MHz Waveguide Loaded Crabbing Cavity Design for the Electron-Ion Collider 679
 
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • J. Guo, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
  • B.P. Xiao
    BNL, Upton, New York, USA
 
  The Elec­tron-Ion Col­lider will re­quire crab­bing sys­tems at both hadron and elec­tron stor­age rings in order to reach the de­sired lu­mi­nos­ity goal. The 197 MHz crab cav­ity sys­tem is one of the crit­i­cal rf sys­tems of the col-lider. The crab cav­ity, based on the rf-di­pole de­sign, ex-plores the op­tion of wave­guide load damp­ing to sup­press the higher order modes and meet the tight im­ped­ance spec­i­fi­ca­tions. The cav­ity is de­signed with com­pact dog-bone wave­guides with tran­si­tions to rec­tan­gu­lar wave-guides and wave­guide loads. This paper pre­sents the com­pact 197 MHz crab cav­ity de­sign with wave­guide damp­ing and other an­cil­lar­ies.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA26  
About • Received ※ 08 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)