Paper | Title | Page |
---|---|---|
MOPA46 | Cryogenic Dielectric Structure with GΩ/m Level Shunt Impedance | 157 |
|
||
Shunt impedance is one of the most important parameters characterizing particle acceleration efficiency. It is known that RF losses are reduced at cryogenic temperatures. For example, a record high shunt impedance of 350 MΩ/m was demonstrated recently for all metal X-band accelerating structure, which is more than 2 times higher than that at room temperature. In this article we present a novel hybrid dielectric structure which can achieve even higher shunt impedance due to the fact that losses in dielectric materials reduced much more than in pure copper. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA46 | |
About • | Received ※ 12 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 23 August 2022 — Issue date ※ 17 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZE4 | First High-Gradient Results of UED/UEM SRF Gun at Cryogenic Temperatures | 607 |
|
||
Funding: The project is funded by DOE SBIR #DE-SC0018621 Benefiting from the rapid progress on RF photogun technologies in the past two decades, the development of MeV range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation. UEM or UED use low power electron beams with modest energies of a few MeV to study ultrafast phenomena in a variety of novel and exotic materials. SRF photoguns become a promising candidate to produce highly stable electrons for UEM/UED applications because of the ultrahigh shot-to-shot stability compared to room temperature RF photoguns. SRF technology was prohibitively expensive for industrial use until two recent advancements: Nb3Sn and conduction cooling. The use of Nb3Sn allows to operate SRF cavities at higher temperatures (4K) with low power dissipation which is within the reach of commercially available closed-cycle cryocoolers. Euclid is developing a continuous wave (CW), 1.5-cell, MeV-scale SRF conduction cooled photogun operating at 1.3 GHz. In this paper, we present first high gradient results of the gun conducted in liquid helium. |
||
Slides WEZE4 [2.817 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZE4 | |
About • | Received ※ 05 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 29 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |