Author: Krislock, N.
Paper Title Page
TUPA34 Model-Based Calibration of Control Parameters at the Argonne Wakefield Accelerator 427
 
  • I.P. Sugrue, B. Mustapha, P. Piot, J.G. Power
    ANL, Lemont, Illinois, USA
  • N. Krislock
    Northern Illinois University, DeKalb, Illinois, USA
 
  Particle accelerators utilize a large number of control parameters to generate and manipulate beams. Digital models and simulations are often used to find the best operating parameters to achieve a set of given beam parameters. Unfortunately, the optimized physics parameters cannot precisely be set in the control system due to, e.g., calibration uncertainties. We developed a data-driven physics-informed surrogate model using neural networks to replace digital models relying on beam-dynamics simulations. This surrogate model can then be used to perform quick diagnostics of the Argonne Wakefield accelerator in real time using nonlinear least-squares methods to find the most likely operating parameters given a measured beam distribution.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA34  
About • Received ※ 05 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 24 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)