Paper | Title | Page |
---|---|---|
TUPA80 | Cyborg Beamline Development Updates | 512 |
|
||
Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE Contract DE-SC0020409. Xray free electron laser (XFEL) facilities in their current form are large, costly to maintain, and inaccessible due to their minimal supply and high demand. It is then advantageous to consider miniaturizing XFELs through a variety of means. We hope to increase beam brightness from the photoinjector via high gradient operation (>120 MV/m) and cryogenic temperature operation at the cathode (<77K). To this end we have designed and fabricated our new CrYogenic Brightness-Optimized Radiofrequency Gun (CYBGORG). The photogun is 0.5 cell so much less complicated than our eventual 1.6 cell photoinjector. It will serve as a prototype and test bed for cathode studies in a new cryogenic and very high gradient regime. We present here the fabricated structure, progress towards commissioning, and beamline simulations. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA80 | |
About • | Received ※ 02 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 09 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA81 | Design of a High-Power RF Breakdown Test for a Cryocooled C-Band Copper Structure | 516 |
|
||
Funding: This work was supported by the DOE Contract DE-SC0020409. High-gradient RF structures capable of maintaining gradients in excess of 250 MV/m are critical in several concepts for future electron accelerators. Concepts such as the ultra-compact free electron laser (UC-XFEL) and the Cool Copper Collider (C3) plan to obtain these gradients through the cryogenic operation (<77K) of normal conducting copper cavities. Breakdown rates, the most significant gradient limitation, are significantly reduced at these low temperatures, but the precise physics is complex and involves many interacting effects. High-power RF breakdown measurements at cryogenic temperatures are needed at the less explored C-band frequency (5.712 GHz), which is of great interest for the aforementioned concepts. On behalf of a large collaboration of UCLA, SLAC, LANL, and INFN, the first C-band cryogenic breakdown measurements will be made using a LANL RF test infrastructure. The 2-cell geometry designed for testing will be modifications of the distributed coupled reentrant design used to efficiently power the cells while staying below the limiting values of peak surface electric and magnetic fields. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA81 | |
About • | Received ※ 29 July 2022 — Accepted ※ 02 August 2022 — Issue date ※ 08 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA86 | Simulations of Nanoblade Cathode Emissions with Image Charge Trapping for Yield and Brightness Analyses | 535 |
|
||
Funding: National Science Foundation Grant No. PHY-1549132 Laser-induced field emission from nanostructures as a means to create high brightness electron beams has been a continually growing topic of study. Experiments using nanoblade emitters have achieved peak fields upwards of 40 GV/m according to semi-classical analyses, begging further theoretical investigation. A recent paper has provided analytical reductions of the common semi-infinite Jellium system for pulsed incident lasers. We utilize these results to further understand the physics underlying electron rescattering-type emissions. We numerically evaluate this analytical solution to efficiently produce spectra and yield curves. The effect of space-charge trapping at emission may be simply included by directly modifying these spectra. Additionally, we use a self-consistent 1-D time-dependent Schrödinger equation with an image charge potential to study the same system as a more exact, but computationally costly, approach. With these results we may finally investigate the mean transverse energy and beam brightness at the cathode in these extreme regimes. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA86 | |
About • | Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 03 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA87 | Simulations for the Space Plasma Experiments at the SAMURAI Lab | 539 |
|
||
Funding: This work was performed with support of the US Department of Energy under Contract No. DE-SC0017648 and DESC0009914, and the DARPA GRIT Contract 20204571 Plasma wakefield acceleration using the electron linear accelerator test facility, SAMURAI, can be used to study the Jovian electron spectrum due to the high energy spread of the beam after the plasma interaction. The SAMURAI RF facility which is currently being constructed and commissioned at UCLA, is is capable of producing beams with 10 MeV energy, 2 nC charge, and 200 fsec bunch lengths with a 4 um emittance. Particle-in-cell (PIC) simulations are used to study the beam spectrum that would be generated from plasma interaction. Experimental methods and diagnostics are discussed in this paper. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA87 | |
About • | Received ※ 04 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 06 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THYD5 | Development of Nanopatterned Strong Field Emission Cathodes | 863 |
|
||
Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE HEP Grant DE-SC0009914. Increasing brightness at the cathode is highly desirable for a diverse suite of applications in the electron accelerator community. These applications range from free electron lasers to ultrafast electron diffraction. Many options for higher brightness cathodes are under investigation notably semiconductor cathodes. We consider here the possibility for an alternative paradigm whereby the cathode surface is controlled to reduce the effective area of illumination and emission. We fabricated nanoblade metallic coated cathodes using common nanofabrication techniques. We have demonstrated that a beam can be successfully extracted with a low emittance and we have reconstructed a portion of the energy spectrum. As a result of our particular geometry, our beam possesses a notably high aspect ratio in its transverse plane. We can now begin to consider modifications for the production of intentionally patterned beams such as higher aspect ratios and hollow beams. |
||
Slides THYD5 [4.652 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYD5 | |
About • | Received ※ 02 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 05 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |