Paper | Title | Page |
---|---|---|
MOPA78 | Temporally-Shaped Ultraviolet Pulses for Tailored Bunch Generation at Argonne Wakefield Accelerator | 222 |
|
||
Photocathode laser shaping is an appealing technique to generate tailored electron bunches due to its versatility and simplicity. Most photocathodes require photon energies exceeding the nominal photon energy produced by the lasing medium. A common setup consists of an infrared (IR) laser system with nonlinear frequency conversion to the ultraviolet (UV). In this work, we present the numerical modeling of a temporal shaping technique capable of producing electron bunches with linearly-ramped current profiles for application to collinear wakefield accelerators. Specifically, we show that controlling higher-order dispersion terms associated with the IR pulse provides some control over the UV temporal shape. Beam dynamics simulation of an electron-bunch shaping experiment at the Argonne Wakefield Accelerator is presented. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA78 | |
About • | Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 31 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRXD5 |
Nonlinearly Shaped Pulses at LCLS-II | |
|
||
Funding: DOE With the goal of improving emittance and longitudinal phase space of the electron beam, we consider nonlinear shaping of the temporal laser profile at the cathode. The operational Ultraviolet (UV) optics installed at the LCLS and LCLS-II currently produce Gaussian shaped pulses. Our simulations show the potential to reduce emittance and increase peak brightness when comparing nonlinear UV laser shapes on the cathode to baseline Gaussian pulses at the cathode. |
||
Slides FRXD5 [3.597 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |