Paper | Title | Page |
---|---|---|
MOZD5 | ERL-Based Compact X-Ray FEL | 37 |
|
||
Funding: Work supported by UT-Battelle, LLC, under contract DE-AC05-00OR22725, and by Jefferson Science Associates, LLC, under contract DE-AC05-06OR23177 We propose to develop an energy-recovery-linac (ERL)-based X-ray free-electron laser (XFEL). Taking advantage of the demonstrated high-efficiency energy recovery of the beam power in the ERL, the proposed concept offers the following benefits: i) recirculating the electron beam through high-gradient superconducting RF (SRF) cavities shortens the linac, ii) energy recovery in the SRF linac saves the klystron power and reduces the beam dump power, iii) the high average beam power produces a high average photon brightness. In addition, such a concept has the capability of delivering optimized high-brightness CW X-ray FEL performance at different energies with simultaneous multipole sources. In this paper, we will present the preliminary results on the study of feasibility, optics design and parameter optimization of such a device. |
||
Slides MOZD5 [2.870 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZD5 | |
About • | Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 04 August 2022 — Issue date ※ 11 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA36 | Emittance Growth Due to RF Phase Noise in Crab Cavities | 708 |
|
||
The Electron-Ion Collider (EIC) incorporates beam crabbing to recover geometric luminosity loss from the nonzero crossing angle at the interaction point (IP). It is well-known that crab cavity imperfections can cause growth of colliding beam emittances, thus degrading collider performance. Here we report a particle tracking study to quantify these effects. Presently the study is focused on crab cavity RF phase noise. Simulations were carried out using Bmad. Dependence of emittance growth on phase noise level was obtained which could be used for developing crab cavity phase control specifications. We also benchmarked these simulations with theory. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA36 | |
About • | Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 02 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |