Author: Mihalcea, D.
Paper Title Page
MOYE3 Experiments on a Conduction Cooled Superconducting Radio Frequency Cavity with Field Emission Cathode 16
 
  • Y. Ji, R. Dhuley, C.J. Edwards, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
  • V. Korampally, D. Mihalcea, O. Mohsen, P. Piot, I. Salehinia
    Northern Illinois University, DeKalb, USA
 
  Funding: The project is supported by DOE HEP Accelerator Stewardship award to Fermilab and Northern Illinois University
To achieve Ampere-class electron beam accelerators the pulse delivery rate need to be much higher than the typical photo injector repetition rate of the order of a few kilohertz. We propose here an injector which can, in principle, generate electron bunches at the same rate as the operating RF frequency. A conduction-cooled superconducting radio frequency (SRF) cavity operating in the CW mode and housing a field emission element at its region of high axial electric field can be a viable method of generating high-repetition-rate electron bunches. In this paper, we report the development and experiments on a conduction-cooled Nb3Sn cavity with a niobium rod intended as a field emitter support. The initial experiments demonstrate ~0.4 MV/m average accelerating gradient, which is equivalent of peak gradient of 3.2 MV/m. The measured RF cavity quality factor is 1.4 × 108 slightly above our goal. The achieved field gradient is limited by the relatively low input RF power and by the poor coupling between the external power supply and the RF cavity. With ideal coupling the field gradient can be as high as 0.6 MV/m still below our goal of about 1 MV/m
 
slides icon Slides MOYE3 [1.444 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOYE3  
About • Received ※ 01 August 2022 — Revised ※ 03 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)