Paper | Title | Page |
---|---|---|
WEYD6 | Design of a PIP-II Era Mu2e Experiment | 568 |
|
||
We propose a design of an upgraded Mu2e experiment for the future Fermilab PIP-II era based on the muon collider front end. The consensus is that such an upgrade should provide a factor of 10 increase in the rate of stopping muons in the experimental target. The current Mu2e design is optimized for 8 kW of protons at 8 GeV. The PIP-II upgrade project is a 250-meter-long CW linac capable of accelerating a 2-mA proton beam to a kinetic energy of 800 MeV (total power 1.6 MW). This would significantly improve the Fermilab proton source to enable next-generation intensity frontier experiments. But using this 800 MeV beam poses challenges to the Mu2E experiment. Bright muon beams generated from sources designed for muon collider and neutrino factory facilities have been shown to generate two orders of magnitude more muons per proton than the current Mu2e production target and solenoid. In contrast to the current Mu2e, the muon collider design has forward-production of muons from the target. | ||
Slides WEYD6 [1.937 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYD6 | |
About • | Received ※ 06 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 09 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THZD6 | An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade | 897 |
|
||
Funding: Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Increasing the Main Injector (MI) beam power above ~1.2 MW requires replacement of the 8-GeV Booster by a higher intensity alternative. In the Project X era, rapid-cycling synchrotron (RCS) and linac solutions were considered for this purpose. In this paper, we consider the linac version that produces 8 GeV H− beam for injection into the Recycler Ring (RR) or Main Injector (MI). The linac takes ~1-GeV beam from the PIP-II Linac and accelerates it to ~2 GeV in a 650-MHz SRF linac, followed by a 8-GeV pulsed linac using 1300 MHz cryomodules. The linac components incorporate recent improvements in SRF technology. Research needed to implement the high power SRF Linac is described. |
||
Slides THZD6 [4.078 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD6 | |
About • | Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |