Author: Posen, S.
Paper Title Page
MOPA23 Tests of the Extended Range SRF Cavity Tuners for the LCLS-II HE Project 100
 
  • C. Contreras-Martinez, T.T. Arkan, A.T. Cravatta, B.D. Hartsell, J.A. Kaluzny, T.N. Khabiboulline, Y.M. Pischalnikov, S. Posen, G.V. Romanov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  The LCLS-II HE superconducting linac will produce multi-energy beams by supporting multiple undulator lines simultaneously. This could be achieved by using the cavity SRF tuner in the off-frequency detune mode. This off-frequency operation method was tested in the verification cryomodule (vCM) and CM 1 at Fermilab at 2 K. In both cases, the tuners achieved a frequency shift of -565±80 kHz. This study will discuss cavity frequency during each step as it is being assembled in the cryomodule string and finally when it is being tested at 2 K. Tracking the cavity frequency helped enable the tuners to reach this large frequency shift. The specific procedures of tuner setting during assembly will be presented.  
poster icon Poster MOPA23 [0.654 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA23  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA24 LCLS-II and HE Cryomodule Microphonics at CMTF at Fermilab 103
 
  • C. Contreras-Martinez, B.E. Chase, A.T. Cravatta, J.A. Einstein-Curtis, E.R. Harms, J.P. Holzbauer, J.N. Makara, S. Posen, R. Wang
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle
    LBNL, Berkeley, California, USA
 
  Microphonics causes the cavity to detune. This study discusses the microphonics of 16 cryomodules, 14 for LCLS-II and 2 for LCLS-II HE tested at CMTF. The peak detuning, as well as the RMS detuning for each cryomodule, will be discussed. For each cryomodule, the data was taken with enough soaking time to prevent any thermalization effects which can show up in the detuning. Each data capture taken was 30 minutes or longer and sampled at 1 kHz.  
poster icon Poster MOPA24 [1.428 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA24  
About • Received ※ 03 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZD6
DarkSRF: Using Accelerator Technology to Search for a Dark Photon  
 
  • S. Posen, A.S. Romanenko
    Fermilab, Batavia, Illinois, USA
 
  Superconducting radio frequency (SRF) cavities have long been used to accelerate beams of charged particles. But their extremely high quality factors >1010 make them useful in high sensitivity searches for physics beyond the standard model. DarkSRF is a ’light-shining-through-the-wall’ (LSW) experiment in which two SRF cavities are tuned to the same frequency and only one is powered. RF power appearing in the unpowered cavity could be a sign of conversion of photons from the powered cavity into dark photons, and then conversion back into photons. In this contribution, we overview the concept, experimental apparatus, and first results.  
slides icon Slides TUZD6 [5.398 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZE4 First High-Gradient Results of UED/UEM SRF Gun at Cryogenic Temperatures 607
 
  • R.A. Kostin, C. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • D.J. Bice, T.N. Khabiboulline, S. Posen
    Fermilab, Batavia, Illinois, USA
 
  Funding: The project is funded by DOE SBIR #DE-SC0018621
Benefiting from the rapid progress on RF photogun technologies in the past two decades, the development of MeV range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation. UEM or UED use low power electron beams with modest energies of a few MeV to study ultrafast phenomena in a variety of novel and exotic materials. SRF photoguns become a promising candidate to produce highly stable electrons for UEM/UED applications because of the ultrahigh shot-to-shot stability compared to room temperature RF photoguns. SRF technology was prohibitively expensive for industrial use until two recent advancements: Nb3Sn and conduction cooling. The use of Nb3Sn allows to operate SRF cavities at higher temperatures (4K) with low power dissipation which is within the reach of commercially available closed-cycle cryocoolers. Euclid is developing a continuous wave (CW), 1.5-cell, MeV-scale SRF conduction cooled photogun operating at 1.3 GHz. In this paper, we present first high gradient results of the gun conducted in liquid helium.
 
slides icon Slides WEZE4 [2.817 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZE4  
About • Received ※ 05 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZD6 An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade 897
 
  • D.V. Neuffer, S.A. Belomestnykh, M. Checchin, D.E. Johnson, S. Posen, E. Pozdeyev, V.S. Pronskikh, A. Saini, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Increasing the Main Injector (MI) beam power above ~1.2 MW requires replacement of the 8-GeV Booster by a higher intensity alternative. In the Project X era, rapid-cycling synchrotron (RCS) and linac solutions were considered for this purpose. In this paper, we consider the linac version that produces 8 GeV H beam for injection into the Recycler Ring (RR) or Main Injector (MI). The linac takes ~1-GeV beam from the PIP-II Linac and accelerates it to ~2 GeV in a 650-MHz SRF linac, followed by a 8-GeV pulsed linac using 1300 MHz cryomodules. The linac components incorporate recent improvements in SRF technology. Research needed to implement the high power SRF Linac is described.
 
slides icon Slides THZD6 [4.078 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD6  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)