Author: Posen, S.
Paper Title Page
MOPA23 Tests of the Extended Range SRF Cavity Tuners for the LCLS-II HE Project 100
 
  • C. Contreras-Martinez, T.T. Arkan, A.T. Cravatta, B.D. Hartsell, J.A. Kaluzny, T.N. Khabiboulline, Y.M. Pischalnikov, S. Posen, G.V. Romanov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  The LCLS-II HE su­per­con­duct­ing linac will pro­duce multi-en­ergy beams by sup­port­ing mul­ti­ple un­du­la­tor lines si­mul­ta­ne­ously. This could be achieved by using the cav­ity SRF tuner in the off-fre­quency de­tune mode. This off-fre­quency op­er­a­tion method was tested in the ver­i­fi­ca­tion cry­omod­ule (vCM) and CM 1 at Fer­mi­lab at 2 K. In both cases, the tuners achieved a fre­quency shift of -565±80 kHz. This study will dis­cuss cav­ity fre­quency dur­ing each step as it is being as­sem­bled in the cry­omod­ule string and fi­nally when it is being tested at 2 K. Track­ing the cav­ity fre­quency helped en­able the tuners to reach this large fre­quency shift. The spe­cific pro­ce­dures of tuner set­ting dur­ing as­sem­bly will be pre­sented.  
poster icon Poster MOPA23 [0.654 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA23  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA24 LCLS-II and HE Cryomodule Microphonics at CMTF at Fermilab 103
 
  • C. Contreras-Martinez, B.E. Chase, A.T. Cravatta, J.A. Einstein-Curtis, E.R. Harms, J.P. Holzbauer, J.N. Makara, S. Posen, R. Wang
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle
    LBNL, Berkeley, California, USA
 
  Mi­cro­phon­ics causes the cav­ity to de­tune. This study dis­cusses the mi­cro­phon­ics of 16 cry­omod­ules, 14 for LCLS-II and 2 for LCLS-II HE tested at CMTF. The peak de­tun­ing, as well as the RMS de­tun­ing for each cry­omod­ule, will be dis­cussed. For each cry­omod­ule, the data was taken with enough soak­ing time to pre­vent any ther­mal­iza­tion ef­fects which can show up in the de­tun­ing. Each data cap­ture taken was 30 min­utes or longer and sam­pled at 1 kHz.  
poster icon Poster MOPA24 [1.428 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA24  
About • Received ※ 03 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZD6
DarkSRF: Using Accelerator Technology to Search for a Dark Photon  
 
  • S. Posen, A.S. Romanenko
    Fermilab, Batavia, Illinois, USA
 
  Su­per­con­duct­ing radio fre­quency (SRF) cav­i­ties have long been used to ac­cel­er­ate beams of charged par­ti­cles. But their ex­tremely high qual­ity fac­tors >1010 make them use­ful in high sen­si­tiv­ity searches for physics be­yond the stan­dard model. Dark­SRF is a ’light-shin­ing-through-the-wall’ (LSW) ex­per­i­ment in which two SRF cav­i­ties are tuned to the same fre­quency and only one is pow­ered. RF power ap­pear­ing in the un­pow­ered cav­ity could be a sign of con­ver­sion of pho­tons from the pow­ered cav­ity into dark pho­tons, and then con­ver­sion back into pho­tons. In this con­tri­bu­tion, we overview the con­cept, ex­per­i­men­tal ap­pa­ra­tus, and first re­sults.  
slides icon Slides TUZD6 [5.398 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZE4 First High-Gradient Results of UED/UEM SRF Gun at Cryogenic Temperatures 607
 
  • R.A. Kostin, C. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • D.J. Bice, T.N. Khabiboulline, S. Posen
    Fermilab, Batavia, Illinois, USA
 
  Funding: The project is funded by DOE SBIR #DE-SC0018621
Ben­e­fit­ing from the rapid progress on RF pho­to­gun tech­nolo­gies in the past two decades, the de­vel­op­ment of MeV range ul­tra­fast elec­tron dif­frac­tion/mi­croscopy (UED and UEM) has been iden­ti­fied as an en­abling in­stru­men­ta­tion. UEM or UED use low power elec­tron beams with mod­est en­er­gies of a few MeV to study ul­tra­fast phe­nom­ena in a va­ri­ety of novel and ex­otic ma­te­ri­als. SRF pho­to­guns be­come a promis­ing can­di­date to pro­duce highly sta­ble elec­trons for UEM/UED ap­pli­ca­tions be­cause of the ul­tra­high shot-to-shot sta­bil­ity com­pared to room tem­per­a­ture RF pho­to­guns. SRF tech­nol­ogy was pro­hib­i­tively ex­pen­sive for in­dus­trial use until two re­cent ad­vance­ments: Nb3Sn and con­duc­tion cool­ing. The use of Nb3Sn al­lows to op­er­ate SRF cav­i­ties at higher tem­per­a­tures (4K) with low power dis­si­pa­tion which is within the reach of com­mer­cially avail­able closed-cy­cle cry­ocool­ers. Eu­clid is de­vel­op­ing a con­tin­u­ous wave (CW), 1.5-cell, MeV-scale SRF con­duc­tion cooled pho­to­gun op­er­at­ing at 1.3 GHz. In this paper, we pre­sent first high gra­di­ent re­sults of the gun con­ducted in liq­uid he­lium.
 
slides icon Slides WEZE4 [2.817 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZE4  
About • Received ※ 05 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZD6 An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade 897
 
  • D.V. Neuffer, S.A. Belomestnykh, M. Checchin, D.E. Johnson, S. Posen, E. Pozdeyev, V.S. Pronskikh, A. Saini, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
In­creas­ing the Main In­jec­tor (MI) beam power above ~1.2 MW re­quires re­place­ment of the 8-GeV Booster by a higher in­ten­sity al­ter­na­tive. In the Pro­ject X era, rapid-cy­cling syn­chro­tron (RCS) and linac so­lu­tions were con­sid­ered for this pur­pose. In this paper, we con­sider the linac ver­sion that pro­duces 8 GeV H beam for in­jec­tion into the Re­cy­cler Ring (RR) or Main In­jec­tor (MI). The linac takes ~1-GeV beam from the PIP-II Linac and ac­cel­er­ates it to ~2 GeV in a 650-MHz SRF linac, fol­lowed by a 8-GeV pulsed linac using 1300 MHz cry­omod­ules. The linac com­po­nents in­cor­po­rate re­cent im­prove­ments in SRF tech­nol­ogy. Re­search needed to im­ple­ment the high power SRF Linac is de­scribed.
 
slides icon Slides THZD6 [4.078 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD6  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)