Author: Potter, J.M.
Paper Title Page
TUPA43 Novel RF Phase Detector for Accelerator Applications 446
 
  • J.M. Potter
    JP Accelerator Works, Los Alamos, New Mexico, USA
 
  A novel phase detector has been developed that is suitable for use in an rf phase locked loop for locking an rf source to an rf accelerator structure or phase locking the accelerator structure to a fixed or adjustable frequency rf source. It is also useful for fast phase feedback to control the phase of an accelerator rf field. The principle is applicable to a wide range of frequencies and amplitudes. The phase is uniquely and unambiguously determined over 360°, eliminating the need for external phase shifters or phase references. The operation of this phase detector is described in detail. An application is described that uses a DDS-based LLRF source as the rf input to a high-power rf system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA43  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 06 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA44 A Personal History of the Development of the LAMPF/LANSCE Accelerator 449
 
  • J.M. Potter
    JP Accelerator Works, Los Alamos, New Mexico, USA
 
  The LAMPF/LANSCE accelerator has now been operational for 50 years. I arrived as a LASL employee in Group P11 in April 1964 at the beginning stages of its development. I participated in the development of the resonant coupling principle [1] and went on to develop tuning procedures for the 805-MHz coupled cavity linac (CCL) structures and the post-stabilized drift tube linac (DTL) [2]. The resonant coupling principle is now well established as the basis for rf linear accelerators worldwide. I will discuss the development and building of the accelerator from my viewpoint as a member of a large, dedicated team of physicists, engineers, technicians, and support personnel.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA44  
About • Received ※ 02 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)