Author: Prieto, P.S.
Paper Title Page
MOPA75 Machine Learning for Slow Spill Regulation in the Fermilab Delivery Ring for Mu2e 214
 
  • A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
  • J.M.S. Arnold, M.R. Austin, J.R. Berlioz, P.M. Hanlet, K.J. Hazelwood, M.A. Ibrahim, V.P. Nagaslaev, D.J. Nicklaus, G. Pradhan, P.S. Prieto, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • J. Jiang, H. Liu, S. Memik, R. Shi, M. Thieme, D. Ulusel
    Northwestern University, Evanston, Illinois, USA
 
  Funding: Work done partly (READS) collaboration at Fermilab (Grant Award No. LAB 20-2261). Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.
A third-integer resonant slow extraction system is being developed for the Fermilab’s Delivery Ring to deliver protons to the Mu2e experiment. During a slow extraction process, the beam on target is liable to experience small intensity variations due to many factors. Owing to the experiment’s strict requirements in the quality of the spill, a Spill Regulation System (SRS) is currently under design. The SRS primarily consists of three components - slow regulation, fast regulation, and harmonic content tracker. In this presentation, we shall present the investigations of using Machine Learning (ML) in the fast regulation system, including further optimizations of PID controller gains for the fast regulation, prospects of an ML agent completely replacing the PID controller using supervised learning schemes such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) ML models, the simulated impact and limitation of machine response characteristics on the effectiveness of both PID and ML regulation of the spill. We also present here nascent results of Reinforcement Learning efforts, including continuous-action soft actor-critic methods, to regulate the spill rate.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA75  
About • Received ※ 03 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 18 September 2022 — Issue date ※ 05 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)