Author: Ramoisiaux, E.
Paper Title Page
MOPA01 Realistic CAD-Based Geometries for Arbitrary Magnets with Beam Delivery Simulation (BDSIM) 55
 
  • E. Ramoisiaux, R. Dantinne, E. Gnacadja, C. Hernalsteens, S. Musibau, B. Ndihokubwayo, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay, W. Shields
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
 
  Monte Carlo sim­u­la­tions are re­quired to eval­u­ate beam losses and sec­ondary ra­di­a­tion ac­cu­rately in par­ti­cle ac­cel­er­a­tors and beam­lines. De­tailed CAD geome­tries are crit­i­cal to ac­count for a re­al­is­tic dis­tri­b­u­tion of ma­te­r­ial masses but in­crease the model com­plex­ity and often lead to code du­pli­ca­tion. Beam De­liv­ery Sim­u­la­tion (BDSIM) and the Python pack­age pyg4om­e­try en­able han­dling such ac­cel­er­a­tor mod­els within a sin­gle, sim­pli­fied work­flow to run com­plete sim­u­la­tions of pri­mary and sec­ondary par­ti­cle track­ing and in­ter­ac­tions with mat­ter using Geant4 rou­tines. Ad­di­tional ca­pa­bil­i­ties have been de­vel­oped to model ar­bi­trary bent mag­nets by as­so­ci­at­ing ex­ter­nally mod­eled geome­tries to the mag­net poles, yoke, and beampipe. In­di­vid­ual field de­scrip­tions can be as­so­ci­ated with the yoke and vac­uum pipe sep­a­rately to pro­vide fine-grained con­trol of the mag­net model. The im­ple­men­ta­tion of these new fea­tures is de­scribed in de­tail and ap­plied to the mod­el­ing of the CERN Pro­ton Syn­chro­tron (PS) com­bined func­tion mag­nets.  
poster icon Poster MOPA01 [0.781 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA01  
About • Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA02 Activation of the IBA Proteus One Proton Therapy Beamline Using BDSIM and FISPACT-II 59
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
 
  Cy­clotron-based pro­ton ther­apy sys­tems gen­er­ate large fluxes of sec­ondary par­ti­cles due to the beam in­ter­ac­tions with the beam­line el­e­ments, with the en­ergy de­grader being the dom­i­nant source. Com­pact sys­tems ex­ac­er­bate these chal­lenges for con­crete shield­ing and beam­line el­e­ment ac­ti­va­tion. Our im­ple­men­ta­tion of the Rig­or­ous Two-Step method uses Beam De­liv­ery Sim­u­la­tion (BDSIM), a Geant4-based par­ti­cle track­ing code, for pri­mary and sec­ondary par­ti­cles trans­port and flu­ence scor­ing, and FIS­PACT-II for time-de­pen­dent nu­clear in­ven­tory and solv­ing the rate equa­tions. This ap­proach is ap­plied to the Ion Beam Ap­pli­ca­tions (IBA) Pro­teus®ONE (P1) sys­tem, for which a com­plete model has been built, val­i­dated, and used for shield­ing ac­ti­va­tion sim­u­la­tions. We de­tail the first sim­u­la­tions of the ac­ti­va­tion on quadru­pole mag­nets in high-flu­ence lo­ca­tions down­stream of the de­grader. Re­sults show the evo­lu­tion of the long-lived nu­clide con­cen­tra­tions for short and long timescales through­out the fa­cil­ity life­time for a typ­i­cal op­er­a­tion sce­nario.  
poster icon Poster MOPA02 [0.553 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA02  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 21 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)