Paper | Title | Page |
---|---|---|
WEZD3 | Magnetron R&D Progress for High Efficiency CW RF Sources of Industrial Accelerators | 597 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and DOE OS/HEP Accelerator Stewardship award 2019-2022. After the demonstration of using high efficiency magnetron power to combine and aim to drive a radio frequency accelerator at 2450MHz in CW mode [1], we have used trim coils adding to a water-cooled magnetron and three amplitude modulation methods in an open-loop control to further suppress the 120Hz side-band noise to -46.7dBc level. We have also successfully demonstrated the phase-locking to an industrial grade cooking magnetron transmitter at 915MHz with a 75kW CW power delivered to a water load by using a -26.6dBc injection signal. The sideband noise at 360Hz from the 3-Phase SCRs DC power supply can be reduced to -16.2dBc level. Their power combing scheme and higher power application to industrial accelerators are foreseeing. [1] H. Wang, et al, Magnetron R&D for High Efficiency CW RF Sources for Industrial Accelerators, TUPAB348, 12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil. |
||
Slides WEZD3 [3.074 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZD3 | |
About • | Received ※ 18 July 2022 — Revised ※ 25 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 11 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZD6 | Manufacturing the Harmonic Kicker Cavity Prototype for the Electron-Ion Collider | 601 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 High-bunch-frequency beam-separation schemes, such as the injection scheme proposed for the Rapid Cycling Synchrotron at the Electron-Ion Collider, demand rise and fall times an order of magnitude below what can realistically be accomplished with a stripline kicker. Nanosecond-time-scale kick waveforms can instead be obtained by Fourier synthesis in a harmonically resonant quarter-wave radio-frequency cavity which is optimized for high shunt impedance. Originally developed for the Jefferson Lab Electron-Ion Collider (JLEIC) Circulator Cooler Ring, a hypothetical 11-pass ring driven by an energy-recovery linac at Jefferson Lab, our high-power prototype of such a harmonic kicker cavity, which operates at five modes at the same time, will demonstrate the viability of this concept with a beam test at Jefferson Lab. As the geometry of the cavity, tight mechanical tolerances, and number of ports complicate the design and manufacturing process, special care must be given to the order of the manufacturing steps. We present our experiences with the manufacturability of the present design, lessons learned, and first RF test results from the prototype. |
||
Slides WEZD6 [12.312 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZD6 | |
About • | Received ※ 04 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 18 August 2022 — Issue date ※ 31 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPA26 | 197 MHz Waveguide Loaded Crabbing Cavity Design for the Electron-Ion Collider | 679 |
|
||
The Electron-Ion Collider will require crabbing systems at both hadron and electron storage rings in order to reach the desired luminosity goal. The 197 MHz crab cavity system is one of the critical rf systems of the col-lider. The crab cavity, based on the rf-dipole design, ex-plores the option of waveguide load damping to suppress the higher order modes and meet the tight impedance specifications. The cavity is designed with compact dog-bone waveguides with transitions to rectangular wave-guides and waveguide loads. This paper presents the compact 197 MHz crab cavity design with waveguide damping and other ancillaries. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA26 | |
About • | Received ※ 08 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 06 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |