Author: Simakov, E.I.
Paper Title Page
TUPA75 High Gradient Testing Results of the Benchmark a/λ=0.105 Cavity at CERF-NM 505
 
  • M.R.A. Zuboraj, D.V. Gorelov, T.W. Hall, M.E. Middendorf, D. Rai, E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by Los Alamos National Laboratory’s Laboratory Directed Research and Development (LDRD) Program.
This pre­sen­ta­tion will re­port ini­tial re­sults of high gra­di­ent test­ing of two C-band ac­cel­er­at­ing cav­i­ties fab­ri­cated at Los Alamos Na­tional Lab­o­ra­tory (LANL). At LANL, we com­mis­sioned a C-band En­gi­neer­ing Re­search Fa­cil­ity of New Mex­ico (CERF-NM) which has unique ca­pa­bil­ity of con­di­tion­ing and test­ing ac­cel­er­at­ing cav­i­ties for op­er­a­tion at sur­face elec­tric fields at the ex­cess of 300 MV/m, pow­ered by a 50 MW, 5.712 GHz Canon kly­stron. Re­cently, we fab­ri­cated and tested two bench­mark cop­per cav­i­ties at CERF-NM. These cav­i­ties es­tab­lish a bench­mark for high gra­di­ent per­for­mance at C-band and the same geom­e­try will be used to pro­vide di­rect com­par­i­son be­tween high gra­di­ent per­for­mance of cav­i­ties fab­ri­cated of dif­fer­ent al­loys and by dif­fer­ent fab­ri­ca­tion meth­ods. The cav­i­ties con­sist of three cells with one high gra­di­ent cen­tral cell and two cou­pling cells on the sides. The ratio of the ra­dius of the cou­pling iris to the wave­length is a/λ=0.105. This poster will re­port high gra­di­ent test re­sults such as break­down rates as func­tion of peak sur­face elec­tric and mag­netic fields and pulse heat­ing.
 
poster icon Poster TUPA75 [0.890 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA75  
About • Received ※ 05 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 01 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA81 Design of a High-Power RF Breakdown Test for a Cryocooled C-Band Copper Structure 516
 
  • G.E. Lawler, A. Fukasawa, J.R. Parsons, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • Z. Li, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
  • B. Spataro
    LNF-INFN, Frascati, Italy
 
  Funding: This work was supported by the DOE Contract DE-SC0020409.
High-gra­di­ent RF struc­tures ca­pa­ble of main­tain­ing gra­di­ents in ex­cess of 250 MV/m are crit­i­cal in sev­eral con­cepts for fu­ture elec­tron ac­cel­er­a­tors. Con­cepts such as the ul­tra-com­pact free elec­tron laser (UC-XFEL) and the Cool Cop­per Col­lider (C3) plan to ob­tain these gra­di­ents through the cryo­genic op­er­a­tion (<77K) of nor­mal con­duct­ing cop­per cav­i­ties. Break­down rates, the most sig­nif­i­cant gra­di­ent lim­i­ta­tion, are sig­nif­i­cantly re­duced at these low tem­per­a­tures, but the pre­cise physics is com­plex and in­volves many in­ter­act­ing ef­fects. High-power RF break­down mea­sure­ments at cryo­genic tem­per­a­tures are needed at the less ex­plored C-band fre­quency (5.712 GHz), which is of great in­ter­est for the afore­men­tioned con­cepts. On be­half of a large col­lab­o­ra­tion of UCLA, SLAC, LANL, and INFN, the first C-band cryo­genic break­down mea­sure­ments will be made using a LANL RF test in­fra­struc­ture. The 2-cell geom­e­try de­signed for test­ing will be mod­i­fi­ca­tions of the dis­trib­uted cou­pled reen­trant de­sign used to ef­fi­ciently power the cells while stay­ing below the lim­it­ing val­ues of peak sur­face elec­tric and mag­netic fields.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA81  
About • Received ※ 29 July 2022 — Accepted ※ 02 August 2022 — Issue date ※ 08 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYD3 Update on the Status of C-Band Research and Facilities at LANL 855
 
  • E.I. Simakov, A.M. Alexander, D.V. Gorelov, T.W. Hall, M.E. Middendorf, D. Rai, T. Tajima, M.R.A. Zuboraj
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Los Alamos National Laboratory LDRD Program
We will re­port on the sta­tus of two C-band test fa­cil­i­ties at Los Alamos Na­tional Lab­o­ra­tory (LANL): C-band En­gi­neer­ing Re­search Fa­cil­ity in New Mex­ico (CERF-NM), and Cath­odes and Rf In­ter­ac­tions in Ex­tremes (CARIE). Mod­ern ap­pli­ca­tions such as X-ray sources re­quire ac­cel­er­a­tors with op­ti­mized cost of con­struc­tion and op­er­a­tion, nat­u­rally call­ing for high-gra­di­ent ac­cel­er­a­tion. At LANL we com­mis­sioned a high gra­di­ent test stand pow­ered by a 50 MW, 5.712 GHz Canon kly­stron. CERF-NM is the first high gra­di­ent C-band test fa­cil­ity in the United States. It was fully com­mis­sioned in 2021. In the last year, mul­ti­ple C-band high gra­di­ent cav­i­ties and com­po­nents were tested at CERF-NM. Cur­rently we work to im­ple­ment sev­eral up­dates to the test stand in­clud­ing the abil­ity to re­mot­edly op­er­ate at high gra­di­ent for the round-the-clock high gra­di­ent con­di­tion­ing. Adding ca­pa­bil­ity to op­er­ate at cryo­genic tem­per­a­tures is con­sid­ered. The con­struc­tion of CARIE will begin in Oc­to­ber of 2022. CARIE will house a cryo-cooled cop­per RF pho­toin­jec­tor with a high quan­tum-ef­fi­ciency cath­ode and a high gra­di­ent ac­cel­er­a­tor sec­tion.
 
slides icon Slides THYD3 [3.331 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYD3  
About • Received ※ 31 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXD4 Suppressing the Microbunching Instability at ATF using Laser Assisted Bunch Compression 914
 
  • Q.R. Marksteiner, P.M. Anisimov, B.E. Carlsten, G. Latour, E.I. Simakov, H. Xu
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This project was supported by funding from the Los Alamos National Laboratory Laboratory Research and Development program.
The mi­crobunch­ing in­sta­bil­ity in lin­ear ac­cel­er­a­tors can sig­nif­i­cantly in­crease the en­ergy spread of an elec­tron beam. The in­sta­bil­ity can be sup­pressed by ar­ti­fi­cially in­creas­ing the ran­dom en­ergy spread of an elec­tron beam, but this leads to un­ac­cept­ably high en­ergy spreads for fu­ture XFEL sys­tems. One pos­si­bil­ity of sup­press­ing this in­sta­bil­ity is to use laser as­sisted bunch com­pres­sion (LABC) in­stead of the sec­ond chi­cane in an XFEL sys­tem, thereby elim­i­nat­ing the cas­caded chi­cane ef­fect that mag­ni­fies the mi­crobunch­ing in­sta­bil­ity. An ex­per­i­ment is pro­posed at ATF to test this con­cept, and nu­mer­i­cal sim­u­la­tions of the ex­per­i­ment are shown.
 
slides icon Slides FRXD4 [4.629 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-FRXD4  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 28 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)