Paper | Title | Page |
---|---|---|
TUPA75 | High Gradient Testing Results of the Benchmark a/λ=0.105 Cavity at CERF-NM | 505 |
|
||
Funding: This work was supported by Los Alamos National Laboratory’s Laboratory Directed Research and Development (LDRD) Program. This presentation will report initial results of high gradient testing of two C-band accelerating cavities fabricated at Los Alamos National Laboratory (LANL). At LANL, we commissioned a C-band Engineering Research Facility of New Mexico (CERF-NM) which has unique capability of conditioning and testing accelerating cavities for operation at surface electric fields at the excess of 300 MV/m, powered by a 50 MW, 5.712 GHz Canon klystron. Recently, we fabricated and tested two benchmark copper cavities at CERF-NM. These cavities establish a benchmark for high gradient performance at C-band and the same geometry will be used to provide direct comparison between high gradient performance of cavities fabricated of different alloys and by different fabrication methods. The cavities consist of three cells with one high gradient central cell and two coupling cells on the sides. The ratio of the radius of the coupling iris to the wavelength is a/λ=0.105. This poster will report high gradient test results such as breakdown rates as function of peak surface electric and magnetic fields and pulse heating. |
||
Poster TUPA75 [0.890 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA75 | |
About • | Received ※ 05 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 01 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPA81 | Design of a High-Power RF Breakdown Test for a Cryocooled C-Band Copper Structure | 516 |
|
||
Funding: This work was supported by the DOE Contract DE-SC0020409. High-gradient RF structures capable of maintaining gradients in excess of 250 MV/m are critical in several concepts for future electron accelerators. Concepts such as the ultra-compact free electron laser (UC-XFEL) and the Cool Copper Collider (C3) plan to obtain these gradients through the cryogenic operation (<77K) of normal conducting copper cavities. Breakdown rates, the most significant gradient limitation, are significantly reduced at these low temperatures, but the precise physics is complex and involves many interacting effects. High-power RF breakdown measurements at cryogenic temperatures are needed at the less explored C-band frequency (5.712 GHz), which is of great interest for the aforementioned concepts. On behalf of a large collaboration of UCLA, SLAC, LANL, and INFN, the first C-band cryogenic breakdown measurements will be made using a LANL RF test infrastructure. The 2-cell geometry designed for testing will be modifications of the distributed coupled reentrant design used to efficiently power the cells while staying below the limiting values of peak surface electric and magnetic fields. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA81 | |
About • | Received ※ 29 July 2022 — Accepted ※ 02 August 2022 — Issue date ※ 08 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THYD3 | Update on the Status of C-Band Research and Facilities at LANL | 855 |
|
||
Funding: Los Alamos National Laboratory LDRD Program We will report on the status of two C-band test facilities at Los Alamos National Laboratory (LANL): C-band Engineering Research Facility in New Mexico (CERF-NM), and Cathodes and Rf Interactions in Extremes (CARIE). Modern applications such as X-ray sources require accelerators with optimized cost of construction and operation, naturally calling for high-gradient acceleration. At LANL we commissioned a high gradient test stand powered by a 50 MW, 5.712 GHz Canon klystron. CERF-NM is the first high gradient C-band test facility in the United States. It was fully commissioned in 2021. In the last year, multiple C-band high gradient cavities and components were tested at CERF-NM. Currently we work to implement several updates to the test stand including the ability to remotedly operate at high gradient for the round-the-clock high gradient conditioning. Adding capability to operate at cryogenic temperatures is considered. The construction of CARIE will begin in October of 2022. CARIE will house a cryo-cooled copper RF photoinjector with a high quantum-efficiency cathode and a high gradient accelerator section. |
||
Slides THYD3 [3.331 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYD3 | |
About • | Received ※ 31 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRXD4 | Suppressing the Microbunching Instability at ATF using Laser Assisted Bunch Compression | 914 |
|
||
Funding: This project was supported by funding from the Los Alamos National Laboratory Laboratory Research and Development program. The microbunching instability in linear accelerators can significantly increase the energy spread of an electron beam. The instability can be suppressed by artificially increasing the random energy spread of an electron beam, but this leads to unacceptably high energy spreads for future XFEL systems. One possibility of suppressing this instability is to use laser assisted bunch compression (LABC) instead of the second chicane in an XFEL system, thereby eliminating the cascaded chicane effect that magnifies the microbunching instability. An experiment is proposed at ATF to test this concept, and numerical simulations of the experiment are shown. |
||
Slides FRXD4 [4.629 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-FRXD4 | |
About • | Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 28 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |