Author: Weatherly, S.
Paper Title Page
MOZE5 Simulation and Experimental Results of Dielectric Disk Accelerating Structures 52
 
  • S. Weatherly, E.E. Wisniewski
    Illinois Institute of Technology, Chicago, Illinois, USA
  • D.S. Doran, C.-J. Jing, J.F. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • B.T. Freemire, C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
 
  Funding: Contract DE-SC0019864 to Euclid Beamlabs LLC. AWA work from U.S. DOE Office of Science under Contract DE-AC02-06CH11357. Chicagoland Accelerator Science Traineeship U.S. DOE award number DE-SC-0020379
A method of decreasing the required footprint of linear accelerators and improving their energy efficiency is to employ Dielectric Disk Accelerators (DDAs) with short RF pulses ( ∼  9 ns). A DDA is an accelerating structure that utilizes dielectric disks to improve the shunt impedance. Two DDA structures have been designed and tested at the Argonne Wakefield Accelerator. A single cell clamped DDA structure recently achieved an accelerating gradient of 1{02} MV/m. A multi-cell clamped DDA structure has been designed and is being fabricated. Simulation results for this new structure show a 1{08} MV/m accelerating gradient with 400 MW of input power with a high shunt impedance and group velocity. The engineering design has been improved from the single cell structure to ensure consistent clamping over the entire structure.
 
slides icon Slides MOZE5 [9.338 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZE5  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 21 August 2022 — Issue date ※ 06 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)