Author: Yakovlev, V.P.
Paper Title Page
WEPA49 Ferrite-Free Circulator for Precise Measurements of SRF Cavities with High Q-Factor 742
 
  • A.I. Pronikov, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • A.A. Krasnok
    Florida International University, Miami, Florida, USA
  • S.N. Romanenko
    Zaporizhzhya National Technical University, Zaporizhzhya, Ukraine
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the US Department of Energy, Offices of High Energy and Nuclear Physics, awards DE-SC0020926 and DE-SC0022439.
In this work, we suggest and investigate new magnetless circulators based on three resonators connected in a loop and parametrically modulated in time with mutual phase lag. The first design consists of three Fano resonators with a spectrally asymmetric response, in contrast to schemes based on the Lorentz resonators explored thus far. The second design includes three Fano-Lorentz resonators, i.e., it also possesses spatial asymmetry. We demonstrate that the asymmetric approach provides strong and reversible isolation for the practically feasible modulation amplitude and rate. The results of our work are promising for precise measurements of superconducting radio frequency cavities with high Q-factor.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA49  
About • Received ※ 04 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 13 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZD6 An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade 897
 
  • D.V. Neuffer, S.A. Belomestnykh, M. Checchin, D.E. Johnson, S. Posen, E. Pozdeyev, V.S. Pronskikh, A. Saini, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Increasing the Main Injector (MI) beam power above ~1.2 MW requires replacement of the 8-GeV Booster by a higher intensity alternative. In the Project X era, rapid-cycling synchrotron (RCS) and linac solutions were considered for this purpose. In this paper, we consider the linac version that produces 8 GeV H beam for injection into the Recycler Ring (RR) or Main Injector (MI). The linac takes ~1-GeV beam from the PIP-II Linac and accelerates it to ~2 GeV in a 650-MHz SRF linac, followed by a 8-GeV pulsed linac using 1300 MHz cryomodules. The linac components incorporate recent improvements in SRF technology. Research needed to implement the high power SRF Linac is described.
 
slides icon Slides THZD6 [4.078 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THZD6  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)