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Abstract

Particle accelerators are complicated machines with thou-
sands of coupled time varying components. The electromag-
netic fields of accelerator devices such as magnets and RF
cavities drift and are uncertain due to external disturbances,
vibrations, temperature changes, and hysteresis. Accelerated
charged particle beams are complex objects with 6D phase
space dynamics governed by collective effects such as space
charge forces, coherent synchrotron radiation, and whose
initial phase space distributions change in unexpected and
difficult to measure ways. This two-part tutorial presents
recent developments in Bayesian methods and adaptive ma-
chine learning (ML) techniques for accelerators. Part 1: We
introduce Bayesian control algorithms, and we describe how
these algorithms can be customized to solve practical accel-
erator specific problems, including online characterization
and optimization. Part 2: We give an overview of adaptive
ML (AML) combining adaptive model-independent feed-
back within physics-informed ML architectures to make ML
tools robust to time-variation (distribution shift) and to en-
able their use further beyond the span of the training data
without relying on re-training.

INTRODUCTION

Particle accelerators are large complex systems whose
beams evolve according to dynamics governed by nonlinear
collective effects such as space charge forces and coherent
synchrotron radiation. Because of their complexity, the con-
trol of charged particle beams in accelerators and diagnostics
of these beams can greatly benefit from the application of
machine learning (ML) [1, 2] methods and advanced control
theory techniques [3].

The development of ML-based tools for particle acceler-
ator applications is an active area of research. At CERN,
supervised learning techniques are being applied for the
reconstruction of magnet errors in the incredibly large (thou-
sands of magnets) LHC lattice [4]. At the LCLS, Bayesian
methods have been developed for online accelerator tun-
ing [5], Bayesian methods with safety constraints are being
developed at the SwissFEL and the High-Intensity Proton
Accelerator at PSI [6], at SLAC Bayesian methods are be-
ing developed for the challenging problem of hysteresis [7]
and surrogate models are being developed for the beam at
the injector [8], and at LANL researchers have been de-
veloping methods to combine neural networks with model-
independent adaptive feedback for automatic control of the
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(z, E) longitudinal phase space (LPS) of intense short elec-
tron beams [9]. Convolutional neural networks (CNN) have
been used to generate incredibly high resolution virtual di-
agnostics of the LPS of the electron beam in the EuXFEL
[10]. A laser plasma wakefield accelerator has also been
optimized by utilizing Gaussian processes at the Central
Laser Facility [11].

In this tutorial we give a brief introduction to some ma-
chine learning methods including neural networks, Bayesian
algorithms, and adaptive feedback.

BAYESIAN METHODS

Bayesian optimization (BO) [12] is a model based opti-
mization method that is well suited for online accelerator
control problems [13-15]. BO consists of three components,
shown in Fig. 1, a Bayesian statistical model of the objec-
tive function known as a Gaussian process (GP) [16], an
acquisition function which characterizes the value of mak-
ing potential observations and a numerical optimizer that
optimizes the acquisition function to pick the highest valued
point. This method excels at optimizing functions that are
expensive to evaluate (such as quadrupole scan emittance
measurements) because GP models provide uncertainty in-
formation when making predictions, allowing BO to balance
exploration and exploitation when searching for global op-
tima. Furthermore, GP models used in BO explicitly model
noisy systems such as accelerators, making optimization less
sensitive to jitter relative to other black box optimization
algorithms.

Bayesian inference is the process of systematically updat-
ing prior statistical beliefs in the presence of experimental
measurements. Imagine a parametric model y = f(x;#6),
where we have collected training data pairs D = {X,y} and 6
parameterized the model. Bayes rule applied to determining
model parameters is given by

p(ylX,0)p(0)
p(X.y)

where p(6) represents the prior, p(y|X, 0) is the likelihood
or evidence, p(0|X,y) is the posterior and p(X,y) is the
marginal likelihood and p(.|.) denotes a conditional proba-
bility. Bayes rule is useful in fitting model parameters due to
the weighting of a prior distribution which regularizes pre-
dictive values of model versus the strength of experimental
evidence. In the case of a uniform prior (no prior information
is known) and a Gaussian likelihood (Gaussian statistical
noise) Bayes rule reduces to non-linear least squares regres-
sion. Gaussian processes use Bayes’ rule to predict objective
function values based on approximate prior knowledge of
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Figure 1: Major components of a general Bayesian Opti-
mization algorithm.

the general behavior of the function (sensitivity to input pa-
rameters, structure etc.). This improves model accuracy (and
as a result optimization performance) when experimental
measurements of the objective function are limited.

A GP represents the function value at a given input point
via a random variable drawn from a joint Gaussian distribu-
tion g(x) ~ GP (u(x), k(x,x")) where p(x) is the mean and
k(x,x") is known as the kernel [16], where x, x” represents
points in the input space. To make a model prediction at the
location x.. we start with a prior Gaussian distribution with
u(x) = 0 (without loss of generality) and the covariance
matrix given by k(X., x.). We then condition the joint mul-
tivariate Gaussian distribution on the data set of N observed
points Dy = {X,y}. This gives us a probability distribu-
tion of the function value at the test point g. = g(x,) with
expected noise o2 by

p(g:lDN) ~ N (e, 07) )

w. =k [K + 021y (3)

o = k(x, %) — kT [K + 01 7'k 4)

k = [k(X:,X1), k(Xs, X1), ..., k(Xe, Xn)] (B
k(x1,x1) k(x1,XN)

K= : : (6)
k(xn,x1) k(xn,Xn)

We encode our prior knowledge about the general function
behavior through our choice of kernel function. Examples
of popular kernels include the radial basis function (RBF)
and the Matern kernels. These kernels contain hyperparam-
eters, such as the length scale parameter which controls the
smoothness of function predictions, are fit to data via max-
imum likelihood estimation (MLE). These kernels can be
generalized by using separate length scales for each design
parameter, a process known as automatic relevance determi-
nation. Fitting independent length scales to each parameter
through this process results in dimensionality reduction as
model predictions will be largely invariant along dimensions
that have long length scales.

Encoding prior information into the model through ker-
nel construction and hyperparameters can have a significant
positive impact on optimization performance, since it im-
proves model accuracy in the absence of measurements [5].
For example, if we expect the function to have periodic or
polynomial structure associated with it, we can combine ker-
nels by adding or multiplying them to impose more accurate
correlations in the input domain. Furthermore, prior infor-
mation can also be encoded into kernels by specifying priors
over their hyperparameters and using maximum a posterori
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(MAP) estimation or variational inference [17] to determine
their posterior values given observed data.

The next step in BO is the calculation of the acquisition
function a(x) which uses the GP model to quantify the value
of making future measurements in input space. When at-
tempting to find global optima of a function it is advanta-
geous to value observations that balance exploitation (choos-
ing points that are likely to be ideal) and exploration (choos-
ing points that have high uncertainty). Examples of popular
acquisition functions that achieve this are Expected Improve-
ment (EI) [18] and Upper Confidence Bound (UCB) [19].
We can also customize acquisition functions to take into ac-
count a set of constraining functions g; (x) < h; by modeling
constraining functions as separate GPs and then weighting
the acquisition function according to the probability of sat-
isfying those constraints

a(x) = a(x) ]__[ p(gi(%) < hy). 7

Furthermore, for accelerator control applications it is often
necessary to reduce the size of jumps in parameter space
in order to maintain stability in external feedback systems.
To achieve this in BO we can bias the algorithm towards
making small steps in input space

a(x, %) =a(x)exp | - (x—x0)" T (x=x0)| (8)
where X is the last point measured and X~! controls the
biasing strength [20].

The final step of BO is to optimize the acquisition func-
tion. As BO represents a nested optimization problem, the
acquisition function should be cheap to optimize, often using
gradient based optimization methods. In service of this, both
the surrogate model and the acquisition function should be
differentiable, ie. the gradient with respect to input parame-
ters should be analytically calculable or cheap to calculate
via differentiable calculations commonly used in machine
learning languages. In cases where acquisition functions are
defined by complicated integrals that do not have analytical
solutions, monte carlo methods using the reparameterization
trick [21] can be used.

A simple example of BO based maximization of a 1D
function is shown in Fig. 2. At each step a GP model is
created based on the observed data. Then the acquisition
function is fed the GP model and is numerically optimized
to choose the next observation point. Initially the model has
high uncertainty and thus BO attempts to reduce uncertainty
by sampling points at the domain boundaries. Eventually
a location is found that is significantly more optimal than
previous measurements. Once found the BO algorithm at-
tempts to exploit the model near the perceived optimum of
the function to find the extrema.

There are several easy to use implementations of BO for
a variety of applications. The python library BoTorch [22] is
recommended as it is based on the well established machine
learning library PyTorch and it has a robust community of
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Figure 2: Example BO of a simple function using the Expected Improvement acquisition function. The ground truth
function is (dotted red line) is optimized over 5 iterations. The blue line and shading denotes the mean prediction and 95%
confidence bounds of the GP model based on measurements (blue dots). The acquisition function (orange) is maximized

(blue triangle) to select the next observation.

developers. Alternatively, for most basic BO applications the
Xopt [23] python library has been developed by the SLAC
machine learning group for both experimental and computa-
tional optimization. It is currently used at several accelerator
facilities including the Linac Coherent Light Source and the
Argonne Wakefield Accelerator and has been used at high
performance computing facilities such as NERSC.

NEURAL NETWORKS

The ability of neural networks to approximate functions
arbitrarily accurately is a famous result [24] based on the
Stone-Weierstrass Theorem [25]. The result guarantees that
for any measurable function f(x) : R" — R"2, any compact
set K ¢ R", and any € > 0 it is possible to create a neural
network-based approximation f such that

sup [[f(x) —f(x)|| <e. ©)
xeK
Intuitively this result should not be too surprising due to
the well known fact that any function in the Hilbert space
L?[0,T] can be represented arbitrarily accurately as

m
£ =" wai(x), (10)
i=1
for various choices of basis functions {¢/;},n. such as the
well known Fourier series or Legendre polynomials.
Considering n, = 1 for notational simplicity, the first step
of a NN is linear regression: an inner product of an input
vector X with a set of input weights wg and the addition of a
bias, followed by applying a nonlinear activation function
X—>b0+ng—>f0(bo+ng)=y0. (11
Instead of forming just one single output yg, if we multiply
x by a matrix of weights, Wy, and add a vector of biases,
by where the number of weight vectors, m, is known as the
width of the NN’s layer. A nonlinear activation function is
applied to each element resulting in a vector yq of m outputs

voj = fo (Whx -+ boj) (12)

09: Computing and Data Science for Accelerator Systems

where WOTJ. = (Woj1s ..., Wojn). A linear combination of the
outputs and a bias is then formed giving the output

|

which is just a particular case of (10).
The weights and biases are adjusted to minimize an error

m

9 = > wijfo

Jj=1

)+b1, 13)

WojkXk + boj
k=1

N
I<h
C=5 D G-y +enlwlh+e bl (14)

i=1

which penalizes not only the NN’s accuracy, but also the />
norms of the weights and biases for regularization. Training
is a gradient descent of C with respect to weights and biases:

6C>

6wl~ jk
where the learning rate 6 < 1 is fixed or may be adaptively
updated and the gradient is an average over a batch of random
combinations of input-output pairs of data.

Instead of building wide single layer NNs, a better ap-
proach is to increase the network’s depth by adding layers
where the vector of a previous layer’s outputs is multiplied
by a matrix of weights and added to a vector of biases and
again a set of nonlinear activation functions is applied.

Wijk_)wijk_6< (15)

Adaptively Tuned Latent Space of Physics-
Informed Encoder-Decoder Convolutional Neural
Networks for Time-Varying Systems

The most powerful ML tools for working directly with

high dimensional data, such as images, are convolutional
neural networks (CNN). When a N X N input image matrix

10 io, jo € {1,2,...,N},

i0.jo’
passes through a stride 2 convolutional layer with a 3 x 3

filter Fy;; the output image size is reduced by a factor of 4
resulting in a N/2 x N/2 image I' with pixels defined as

1 1
Iill,j1 :f b0+ Z Z F(),ij

i=—1 j=—1

0
X Ii0+i,jo+J'

, (16)

FRXE1
923

©= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI



©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

5th North American Particle Accel. Conf.
ISBN: 978-3-95450-232-5

measurement
adaptlve feedbac
/llm
>~ predictions
pL(t)

p(xy), p(x,2), ..
low-dimensional latent
space representation

unknown,
time-varying input
I°(t)

Figure 3: Schematic of an adaptive CNN-based encoder-
decoder for a system with unknown time-varying inputs.

with extra zeros padded onto the image as needed. A collec-
tion of Ny > 1 filters is used, resulting in an output image

=p! +anxfn bo"'z Z FOU"XIlo+lJO+J

i=—1j=-1
a7
For a wide encoder-decoder CNN with several layers the
number of adjustable parameters quickly grows to millions
and re-training requires large collections of new data sets.

One of the major limitations of machine learning is an in-
ability to deal with time-varying systems, or systems with dis-
tribution shift [26-30]. Attempts to compensate for changing
environments rely on techniques such as domain transfer,
transfer learning, and active learning, which are all forms
of re-training with new data. For particle accelerators re-
training usually means lengthy beam interruption to collect
new invasive data sets, and for most interesting problems is
not possible.

Here we present an adaptive alternative for cases in which
re-training is not possible because we no longer have access
to the time-varying input distribution 7°(¢). Our approach is
to use several layers of convolutions to significantly reduce
the size of an image, ending up with a tensor of shape N; x
N; X Ny where N; X N; is the final image size and Ny is
the number of filters in the last convolution layer of the
encoder. We can then flatten the image and apply dense
fully connected layers to reach a low-dimensional latent
space representation, a vector vy of length Ny < N; ),
which can be adaptively tuned by a Ny dimensional control
input vector vy, ., which is then passed through additional
fully connected dense layers before being reshaped into a
small image (~ 8 x 8) before flowing through a series of 2D
transpose convolution layers until a collection of N,, output
images of size N;,, X N;,, are generated in a final layer with
N, channels with size (i, j, d) = Niy X Nim X Ne. Once
the network is trained this collection of output images is
a general nonlinear function (the generative branch of the
network) of the parameters p, of the form

il,j(d) =F (pL’W» b’ {A}) ’

where w and b are the weights and biases and {A} are the set
of activation functions of the generative layers. Our predic-
tion I is our estimate of some unknown physical quantity 1
which we assume we cannot easily directly measure fully. In
order to enable the adaptive feedback part of this procedure
we must assume that we have some form of non-invasive
online measurement of M (I(¢)) that can be compared to a
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Figure 4: (A, B): ES convergence in the 2D latent space
to match the LPS distribution. C: AML-based adaptive
match of LPS distribution. D: Matched transverse phase
space distributions as a result of matching the LPS (other 12
projections also matched closely, are not shown).

simulated measurement of our prediction M (), which we
know how to approximate as shown in Fig. 1.

For example we may be interested in a 6D density distri-
bution but we only have direct measurements of the p(z, E)
2D projection. The generative half of our CNN may then be
used to generate estimates of all 15 unique projections of a
beam’s 6D phase space {p1(x,y),...,015(z, E)}.

By forcing the CNN to simultaneously generate all 15
projections of the 6D phase space we introduced observa-
tional biases directly through data embodying the underlying
physics, allowing the CNN to learn functions that reflect the
physical structure of the data. Additional physics constraints
are enforced by a PINNs approach in which the CNN’s train-
ing cost function is of the form:

Cny = , (19)

where the first term is standard supervised training and the
second enforces that the CNN satisfy a PDE operator D [31].
Our dynamic feedback minimizes the cost

Clp.1) = / /E (p15(2. E, 1) = prs (2, E. 1)) dEdz, (20)

where the measurement p;5(z, E, t) is time-varying due to
uncertain time-varying input beam distributions and accel-
erator parameters. The latent space is tuned according to

dpLd;(t) Vaw; cos (w;t + kC(1))),

where the feedback dynamics (21) are chosen based on a
recently developed form of adaptive feedback control known

2y
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as extremum seeking (ES) which was designed for the stabi-
lization and optimization of analytically unknown nonlinear
time-varying systems [32], which results in a minimization
of C by tracking the time-varying M () with the approxima-
tion M (1) according to average dynamics of the form:

d[_)L ka —
s —TVﬁLC(PL, 1).

(22)

Because the CNN is physics-informed, it is possible to pre-
dict un-measured 2D phase space projections by tracking just
the single measured (z, E) distribution as the network has
learned the correlations between the various dimensions of
the 6D phase space. Such an approach was recently demon-
strated for tracking the time varying input beam of the HIRES
UED [33], and the 2D projections of the time-varying 6D
phase space of charged particle beams in particle accelera-
tors as shown in Fig. 4 adapted from [34].

Creating custom deep learning models, including deep
neural networks, CNN’s, and variational autoencoders is
easily done via powerful open-source software packages
such as TensorFlow [35].

CONCLUSIONS

Bayesian optimization-based methods as well as neural
networks are powerful tools for online accelerator controls
and diagnostics. While Bayesian methods provide uncer-
tainty quantification and can guide intelligent data collection
CNNss are able to handle and generate incredibly high dimen-
sional objects such as images directly. Bayesian neural net-
works attempt to combine the strengths of NNs and Bayesian
methods to provide uncertainty quantification of NN-based
models [36]. Furthermore, combining model-independent
adaptive feedback techniques with physics-informed ML
tools has proven to help make them more robust to uncer-
tainty, time-variation, and distribution shift.
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