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Abstract
The MeV Ultrafast Electron Diffraction (MUED) instru-

ment at Brookhaven National Laboratory is a unique capa-
bility for material science. As part of a plan to make MUED
a high-throughput user facility, we are exploring instrumen-
tation developments based on Machine Learning (ML). We
are developing a surrogate model of MUED that can be used
to support control tasks. The surrogate model will be based
on beam simulations that are benchmarked to experimental
observations. We use VSim to model the beam dynamics of
the radio-frequency gun and Elegant to transport the beam
through the rest of the beam-line. We also use High Per-
formance Computing resources from Argonne Leadership
Computing Facility to generate the data for the surrogate
model based on the original simulation as well as training
the ML model.

INTRODUCTION
The MeV Ultra-fast Electron Diffraction (MUED) system

at Brookhaven National Laboratory (BNL) is a unique re-
search tool that enables the study of the crystalline structure
of materials using electron diffraction [1]. At the center
of the MUED operation is the radio-frequency gun, which
provides an energy gain of 3 MeV to the electron beam [2].
The high accelerating gradient helps reduce the space charge
effect in the beam, which is significantly reduced with in-
creasing energy. The electron gun is a normal conducting
radio-frequency cavity, composed of 1.6 cells and designed
to operate at 2856 MHz in the TM010, 𝜋-mode [2]. The
electron beam is produced via photo-electric effect on a Cu
cathode using a frequency-tripled Ti:Sapphire laser. The Cu
cathode doubles as the wall of the half-cell of the rf gun.
A solenoid magnet sits immediately after the rf gun, and it
helps focusing the beam. A pair of horizontal and vertical
corrector magnets are also used to control the beam towards
the collimator, the sample holder and the detector, which sits
4 m downstream. Figure 1 shows a photograph of the beam
optics elements of MUED. After the material sample, the
beam drifts for a long stretch, which improves the resolution
on the diffraction pattern. The MUED detector is a Phosphor
screen and is imaged with a cryogen-cooled Andor CCD
camera.
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Figure 1: The MUED focusing magnets and sample holder.

MUED also has the capability of laser-pumping the ma-
terial sample. The Ti:Sapphire laser can be used to photo-
excite the material sample, this can drive phase transitions in
the material, and can be analyzed by looking at the evolution
of the diffraction patterns before and after a time-zero 𝑇0
when the laser pulse arrives at the sample.

With these capabilities on-hand, there is interest in de-
veloping the instrumentation of MUED to maximize the
throughput of science and users, and to minimize the facility
experimental down-time. As MUED users, we are exploring
the use of ML and optimization tools to support MUED
operations. After our first dedicated beam-time at BNL, we
learned that an important concern for experimental data-runs
is the energy jitter of the electron beam. Energy variations
arise from variations in the rf phase of the gun. Variations in
beam energy directly translate into the aperture angle of the
diffraction patterns, making the laser-pump measurements
particularly noisy. We believe ML and optimization tools
can be deployed at MUED to help with the beam stability. In
particular, we envision a surrogate model capable of taking
the detector images as inputs and producing the required
instrument control settings that optimize the beam [3–5].

SURROGATE MODEL FOR MUED

Computer simulations are generally used as a way to under-
stand the dynamics of a system, whether on the developing
phase or when trying new system configurations. Simula-
tions can provide accurate results, but more often than not,
the computing time required to produce a solution is not
suitable for real-time operations.
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We are creating an end-to-end simulation of MUED that
accurately replicates the experimental observations. This
simulation can then be used to calculate the expected out-
put beam phase space given a set of input parameters. By
running the simulation for thousands different sets of input
parameters, we can produce data to train our ML model,
effectively coding the accuracy of the computer simulation
into a ML model capable of producing an output fast enough
that it can be used for real-time control [3]. We are basing
our simulation on the nominal values of the instrument [2]
and will introduce random variations of these parameters
and in different combinations. A surrogate model can also
be used to help diagnose the system by acting as virtual di-
agnostics where instrumentation is not physically available,
or the impact to operations is considerable, e.g. when using
destructive diagnostics.

In its current state, most of the MUED health checks rely
on the camera detector. Because of this, we envision a ML
model that takes the image from the Andor camera as an
input, and outputs the required instrumentation settings that
optimize the beam given some constraints. For MUED in
particular, the energy stability of the electron beam translates
into high-resolution diffraction patterns. Figure 2 shows an
example of the un-diffracted data we collected during our
last dedicated user beam-time.

Figure 2: Un-diffracted electron beam as imaged at the
MUED detector.

Computer Model of MUED
The reality of ML models is that they are only as good

as the data used for training. In designing a reliable surro-
gate model of MUED, we want our simulation to capture
as much detail from the system as possible, and to produce
accurate results. We differentiate two main regions of the
MUED beam-line: the radio-frequency gun and the beam
optics elements. This distinction is because of the nature of
the electromagnetic fields present, where the electron gun
operates in radiofrequency, but the beam optics elements are
DC. We are particularly interested in an accurate model of
the rf gun and variations of the rf phase. For this reason, we
use VSim [6,7] to model the electromagnetic active region
of MUED and Elegant [8] to propagate the beam through the
rest of the beamline. Figure 3 shows a cross-section view of
the rf gun in VSim. VSim uses finite-difference time-domain
methods to resolve the electrodynamics inside the simula-
tion region. The rf gun is driven by a rectangular waveguide

and the model includes tuners, as well as laser and vacuum
ports. Elegant takes the beam produced by VSim as an input,

Figure 3: The 1.6 cell radio-frequency gun at BNL (left).
A VSim simulation showing the longitudinal electric field
inside the electron gun (right).

and propagates the beam phase space along the rest of the
beam-line.

The available input parameter space that we are able to
model with our simulation is summarized in Table 1. The
output of the combined simulation is the beam phase space
at the detector. The effects of misalignments can also be
included in the parameter space.

Table 1: Input Parameter Space of the MUED Simulation

Parameter Code

RF freq. VSim
RF phase VSim
Input power VSim
Phase space (IN). VSim
Sol. field strength Elegant
Correctors (H/V) Elegant
Collimator pos. Elegant

High Performance Computing
In order to be able to produce thousands of data-points

using our VSim simulation, we rely on the use of HPC to
expedite the computation time. We have deployed VSim
in the THETA supercomputer at the Argonne Leadership
Computer Facility and optimized the hardware affinity for
VSim PIC simulations. Figure 4 shows the optimal use of
parallel processes is 1024.

COMMENTS
This is an on-going effort. Here we describe the MUED

instrument at BNL and discuss a plan for creating a surrogate
model using computer simulations. We are using VSim and
Elegant to simulate the beam dynamics from the cathode to
the detector. VSim is used to model the rf gun, including
the waveguide, ports and tuners. Elegant is used to simulate
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Figure 4: Optimization of parallel processes on a VSim PIC
simulation at THETA.

the beam along the beam optics DC elements. Using this
model, we are now benchmarking our simulation to exist-
ing un-diffracted beam date recorded during experimental
runs. To create a surrogate model of MUED, we need to
run multiple simulations with different initial conditions that
can serve as training data for our ML model. We use the
THETA supercomputer at ALCF to optimize the individual
simulation run time.

Future Work
In the near term, our group is scheduled for beam-time in

the Summer of 2022, we are planning to integrate our codes
with the control interface of MUED and start collecting in-
strumentation data to evaluate the accuracy of our model.
We are also submitting simulation jobs to THETA to pro-
duce training data for our ML model and to use THETA for
training of the ML model. We are planning to test multiple
ML algorithms and to optimize the hyper-parameters using
the resources available at ALCF.
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