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Abstract
Principal component analysis and autoencoder analysis

were used to analyze the experimental data of RHIC opera-
tion with low energy RHIC electron cooling (LEReC). This
is unsupervised learning which includes electron beam set-
tings and observable during operation. Both analyses were
used to gauge the dimensional reducibility of the data and
to understand which features are important to beam cooling.

INTRODUCTION

Beam cooling is an important technique that reduces the
phase space area that is occupied by the particle’s distri-
bution. Strong hadron cooling, for the high energy and
high-intensity hadron beam, will greatly benefit machines
such as the future electron ion collider (EIC) to achieve a
high luminosity result [1].

The optimization of the cooling performance involves
tuning the parameters of the hadron accelerator, the cooler
accelerator, and the alignment between them. Physics mod-
els are usually not precise enough to support physics-based
optimization, therefore a data-driven approach may play an
important role. With the presence of sufficient data, one can
hopefully find hidden correlations and surrogate models for
predicting and optimizing machine performance.

In this paper, we analyze the data-driven method using
the averaged measured data of low-energy run of Relativistic
Heavy Ion Collider (RHIC) with the Low Energy RHIC Elec-
tron Cooling (LEReC) [2]. The data were manually collected
from each ramp of the RHIC run with cooling. These include
the working points and collimating parameters of the RHIC
ring, magnetic settings of the cooler magnets, alignments
between the ion and electron beam, and the corresponding
beam losses and luminosity.

The analysis being done is known as unsupervised learn-
ing, which is when we do not have a map between an input
and the desired output. This helps us to find relationships
between the variables as opposed to supervised learning
which tries to predict the output given the input.

The following paper will first apply principle component
analysis (PCA) and then an autoencoder analysis, to reduce
the dimension and to understand which parameters are im-
portant when optimizing the beam cooling.
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PCA ANALYSIS
PCA is a linear data analysis technique used to extract the

most important information by compressing the size of the
data [3]. The data was stored as a 𝐿 × 𝐽 matrix where 𝐿 are
observations and 𝐽 are the features. Observations are the
data from each run while features are the different inputs
and outputs. After the dataset was cleaned, the resulted
dataset had around 700 observations, each with 38 features.
The data was standardized to a mean of 0 and a standard
deviation of 1 with respect to the features. This resulted in
the dataset 𝑋 with matrix elements {𝑥𝑙, 𝑗 ∈ 𝑋 |𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽}.

The inertia of a column is defined as

𝐼 𝑗 =
∑︁
𝑙∈𝐿

𝑥2
𝑙, 𝑗 , (1)

while the inertia of the dataset is the total inertia, which is
the sum of all the column inertia. The term inertia is used
because values of a column 𝐽 for all observation L can be
thought of like a mass, and if each column has a zeroed
mean, 𝐼 𝑗 would be the inertia. 𝑋 is made of this inertia so if
a column has a large inertia, it is said to explain more of the
whole dataset.

PCA was used to project 𝑋 into principle components
and will be referred to simply as components. The first
component has the largest inertia and subsequent ones have
decreasing magnitudes while also being orthogonal to the
previous components. The projection of 𝑋 was calculated
using standard value decomposition (SVD) as follows: Let
the SVD of 𝑋 be

𝑋 = 𝑈Σ𝑄, (2)

then 𝐹 = 𝑈Σ is the projection of 𝑋 on the principle compo-
nents while 𝑄 is the projection matrix.

One of the goals of PCA is to project the matrix X into
a matrix with fewer components (fewer variables) while
maintaining the core information. This was used to create an
approximate data matrix 𝑋𝑀 with M principle components.
The error between these two matrices is the residual sum of
squares 𝑅𝐸𝑆𝑆𝑀 ,

𝑅𝐸𝑆𝑆𝑀 = | |𝑋 − 𝑋𝑀 | |2, (3)

where | | | | is the square root of the sum of all the squared
elements of 𝑋 − 𝑋𝑀 . This is similar to mean square error
(MSE). A lower number corresponds to a better recreation
of the original data matrix. The analysis is shown in Fig. 1.
With PCA, 𝑅𝐸𝑆𝑆 goes to zero as the number of compo-
nents reaches the original number of components. The error
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decreased as more components were added and became neg-
ligible when 36 out of 38 components were reached. This
does not directly suggest two features are insignificant. This
only shows that there exist 2 columns, which are linear com-
binations of features, that are insignificant, and it is possible
to reduce the dimension of the data at least by 2. To decide
what is an appropriate number of components to keep, the
standard technique [3] of only keeping components whose
inertia is larger than the average inertia was used, resulting
in 28 of the 38 components being kept.

Figure 1: Comparison of RESS from PCA and Autoencoder
for 38 different components.

Looking at how each observation is separated will allow
for an interpretation of the components. If one component
were to separate the observations such that some features
are also separated clearly, then that component can be inter-
preted as corresponding to those features it separates. To do
this analysis, all the observations were projected onto the
first component. Then, starting with one feature, the obser-
vation would be assigned the value of that feature. Some
components will have a clear pattern such as high values
being grouped for positive projections and negative values
grouped for negative projections. Others would be random
and no clustering would be observed. This can be quanti-
fied using a clustering factor. Let the projected observations
𝑓𝑙, 𝑗 ∈ 𝐹 be normalized into the range [−1, 1]. The cluster-
ing factor 𝑐 𝑗 is

𝑐 𝑗 =
∑︁
𝑙∈𝐿

𝑥𝑙, 𝑗 sin 𝑓𝑙, 𝑗 . (4)

This works because if there is no clustering, then terms
would cancel out, and if there is a clear separation, we would
get a large value. This would not work for cases where
the high and low pattern alternates, but this is a good low
approximation.

The clustering factor was calculated for each feature and
the results are plotted in Fig. 2. The large values show that
the component is responsible for describing multiple data
points. The features ‘RF’ and ‘Ramp’ has low clustering fac-
tor so it does not contribute to the explanation. Luminosity
in this component has a clustering factor around 300, which

Figure 2: Clustering Factor of the features for the first prin-
ciple component of PCA.

is the largest while the second largest is in component 3 with
a value around 100. In both cases, ‘RF’ and ‘Ramp’ are
around zero suggesting they are not related to Luminosity.

AUTOENCODER ANALYSIS
Another dimensionality reduction algorithm is autoen-

coder [4]. This is an unsupervised machine learning algo-
rithm that first takes the inputs, put them through a series
of the neural network, and in the end tries to recreate the
original inputs. The inner layer of the neural network can be
made arbitrarily small allowing the data to be compressed
to a smaller latent dimension. This can be verified if the
error between the original and recreated input is very small.
Non-linear activation functions can also be used in the model
making the algorithm able to capture non-linear effects.

Using PyTorch, a model was made where each observa-
tion was put through an encoder, a neural network mapping
the observation to a variable latent dimension, then the result
from this was put through a decoder, another neural network
mapping from the latent dimension to the reconstructed ob-
servation. It was trained on the whole dataset using a mean
square error loss function for latent dimensions from 1 to
the total number of features. The RESS was also calculated
for each step and the result is plotted in Fig. 1. The model
was able to reach its error limit at around 8 latent dimen-
sions. PCA was able to reach a similar level of error with
10 components.

The question now is what error is acceptable? Two latent
dimensions will be taken for visual analysis. Using two
latent dimensions, 3 features, ramp, energy, and luminosity
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Figure 3: Left: Autoencoder loss. By using an autoencoder,
it recreates the original observations better. It need only
around 7–8 points until it reaches the limiting error. Right:
Colored plots of different features projected onto two latent
dimensions using Autoencoders. The color of each point
corresponds to its standardized value on the bar.

will be used to showcase the analysis. After training, the true
and predicted values of the three are plotted as a correlation
plot in the left of Fig. 3. If we have perfect reconstruction,
we would get a straight light. This is not the case for ‘Ramp’,
but for ‘Energy’ and ‘Luminosity’, we do have a positive
correlation; however, it is not perfect as expected. ‘Ramp’ is
just a setting that tells how fast to turn on the voltage. This
should not affect the experiment in the first place so seeing
that ‘Ramp’ does not correlate is encouraging.

Another analysis was done by making an autoencoder
using 2 latent dimensions. The observations can then be
plotted on a 2-dimensional image to see clusters. Then the
value of each observation can be colored by a feature to see
some patterns. Looking at ‘Ramp’ in the right of Fig. 3,

there is no pattern so it confirms the fact that ‘Ramp’ is not
meaningful. Looking at luminosity, one can see clusters
where there are high and low values. Then, by sampling
points around regions of high luminosity values in the la-
tent dimension, different beam settings can be reconstructed
using the decoder that might be fruitful.

CONCLUSION
Dimensionality reduction is important as it cleans the

data by removing unimportant data and allows for an in-
terpretation of the importance of certain features. Using
PCA, a linear algorithm, the data requires 28 out of the 38
components to be reduced. It was found that at least two
features were unnecessary since the last two components
have negotiable contributions and they may be ’RF’ and
’Ramp’ according to our interpretation analysis. Using an
autoencoder, the data can be reconstructed with less error
compared to PCA for the first few dimensions, but eventually
reach an error limit since the dataset, which is under 1000,
is not large and autoencoders need a lot of data to be trained
on.

The advantage is that autoencoders can capture non-linear
effects allowing it to compress the data in fewer point than
PCA if non-linear effects are being dealt with, but is unable
to reach usable accuracy without a lot of data to be trained
on. PCA will eventually recreate the original dataset with
enough components, but because it is a linear algorithm, it
has a hard time reducing the dimension of non-linear effects.

A study comparing how well both methods can be used to
aid in the prediction of certain outputs, such as luminosity,
using a neural network should be conducted to better gauge
how well the method can produce meaningful data reduction.
At the moment, due to the small amount of data, a reducible
set of inputs was not possible if the desired outputs were
taken away from the dataset. This will be the topic of further
investigation if more data can be collected.
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