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Abstract

This work demonstrates using a Neural Network and a
Gaussian Process to model the ATLAS front-end. Various
neural network architectures were created and trained on the
machine settings and outputs to model the phase space pro-
jections. The model was then trained on a dataset, with non-
linear distortion, to gauge the transferability of the model
from simulation to machine.

INTRODUCTION

A challenging problem in obtaining high beam power in
hadron linacs, such as ATLAS, SNS, and FRIB, is under-
standing and minimizing uncontrolled beam loss, a major
unexpected loss of the beam within the beamline. [1] In the
low energy beam transport lines (LEBT), the beam must be
carefully controlled to minimize the beam loss downstream.
The beam is generally a collection of particles that can be de-
scribed in six-dimensional space; three positions, and three
momentum coordinates. For the DC beam in the LEBT,
the longitudinal coordinates may contribute if the dipole is
not controlled, but this effect will be ignored in this paper.
Therefore, each charged particle is described by its location
in the four-dimensional (4D) transverse phase space (x, x’, y,
y"), where primed coordinates are derivatives with respect
to the longitudinal direction.

In the LEBT, multiple beam measurement devices such
as Alison Scanners [2], Pepper-Pot emittance meters [3],
wire scanners [4], and viewers are used to capture one-
dimensional (1-D) or two-dimensional (2D) profile mea-
surements, which are projections of the four-dimensional
(4D) transverse phase space. Inferring the 4-D distribution
from these projected 1-D and/or 2-D information is referred
to as 4D tomography. Mathematical and physical methods,
such as the maximum entropy principle [5, 6] , has been
successfully demonstrated to realize the 4-D tomography in
accelerators.

In this paper, we tested a data-driven approach to predict
the beam loss using 2D projections measurements. The data
was generated from virtual diagnostic instruments simulated
using the beam dynamics code TRACK. The simulation
data was from a test lattice adopted from the LEBT of the
ATLAS accelerator and were used to develop a convolutional
autoencoder to encode the data into a meaningful lower-
dimensional representation, which relates the phase-space
information to the beam loss.
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Figure 1: Cartoon of accelerator and beam measurements.
The image shows where each beam measurement was col-
lected from.
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COLLECTING THE DATA

The presented study used data generated from the simula-
tion of ATLAS’s LEBT. The virtual diagnostic instruments
capture the 4D phase space of the beam. The locations are
shown in Fig. 1 where the phase-space projections of the 4D
phase space and losses are measured and saved. This amount
of information is currently hard to achieve in a real accelera-
tor but it is used to study the feasibility of the method.

Generating Data Using TRACK

TRACK is a ray-tracing or particle-tracking code that can:
(1) represent external fields accurately within the aperture.
(2) calculate the particle coordinate at any point in the space.
(3) determine beam loss in both the ideal case and in the pres-
ence of complex field errors and device misalignments [7].

TRACK simulations were used to gather data as machine
data was unavailable. Over a million data point was gen-
erated on Michigan State University’s high-performance
computing cluster. This is needed since a significant amount
of data will be required for training autoencoders to high
fidelity. The parameters for these simulations were varied ac-
cording to Table 1 and were chosen within and interpertable
range. The data was filtered so that the initial beam distribu-
tions were contained within the beam aperture, resulting in
a final data set of around 430,000 simulation points.

2D phase-space projections where taken by depositing the
particles onto an nxn grid using pairs of the coordinates axes,
(x,x”,v,¥"). This resulted in 6 independent projections.

Non-linear Field

A separate data set was generated to test the generaliz-
ability of the model which will be explained later. This
was done with a perturbation to the initial distribution by
putting a non-linear magnetic field, such as a sextupole, at
the beginning of the simulation.
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Table 1: Parameter range used to generate data set of the initial beam distributions and quadruple settings.

Input

Voltages on Quadruples 1, 3, 5
Voltages on Quadruples 2, 4, 6
Initial Distribution

uniform random number from [0,8] V
uniform random number from [-8,0] V
random distribution from 9 built in distribution

€xy 0.12 + Normal(u = 0,0 = 0.012) cm*mrad

Ay Normal(u = 0,0 = 1) unitless

ﬁx,y 100 + Normal(pu = 0,0 = 10) cm/rad
Output

Number of particles left
Position of all particles

[0,10000] particles. Taken at 4 different points

Taken at 5 different points

CREATING THE MODEL

Autoencoder

An autoencoder is a nonlinear data reduction algorithm
used in machine learning. It is composed of two parts, an
encoder, and a decoder. The encoder takes a large input and
reduces it into a lower dimension, known as a latent dimen-
sion, while the decoder attempts to reconstruct the latent
dimension back into the original input. The error, which is
the difference between the original and reconstructed data
quantifies how well the latent dimension explains the orig-
inal input. The advantage of compressing the data into a
meaningful representation [8] makes it more efficient to train
a neural network model on the reduced data.

In the model, a convolutional autoencoder was imple-
mented in PyTorch [9] to reduce the input dimension. A
convolutional autoencoder uses a convolutional neural net-
work as the encoder and decoder. A convolutional neural
network is a type of neural network used to analyze visual
information [10]. This has the advantage over principal com-
ponent analysis [11], another data reduction algorithm, in
that it includes spacial information, and can account for non-
linear effects by using non-linear activation functions in the
network. Activation functions are functions that map the
input onto a set range. It was found that the reLu activation
function and eLu activation function were the best activation
functions to use [12], which in this case, helps the model to
train fast and be less likely to fail during training.

Each of the six 2D projections was given its own autoen-
coder. The decoder was able to reproduce all the original
projections with reasonable accuracy, verifying that the pro-
jections were effectively encoded into a latent dimension.
The latent dimensions sizes used for this paper were 32 for
the (x,x"), and (y,y") projection, and 16 for the rest. Given
that the original images were made to be 33 x 33 pixels, the
inputs were significantly reduced.

Modeling

A neural network was used to create a surrogate model of
the ATLAS front-end as shown in Fig. 2. The architecture
is composed of first an encoder-decoder block to reduce,
separately, each of the six phase-space projections into lower
latent dimensions and then concatenated together. The quad
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Figure 2: Cartoon of architecture. During training, the
model takes all the 2D projections and loss value as input
into the training. During testing, only the initial 2D projec-
tions were given and the model predicts the loss values and
2D projections in addition.

settings were also concatenated onto this vector. This vector
is inserted into a fully connected layer which does a phase-
space transformation on the latent dimension. The output
from this is inserted into a decoder block to reconstruct the
2D phase-space projections at that location, another fully
connected layer to predict the number of particles left, and
into another fully connected layer to repeat the same process
until the end.

The encoder-decoder block uses a convolutional autoen-
coder as described in the previous section. A decoder was
not trained for every location, but was combined for each
projection. This saves limited GPU memory and produces a
more generalized decoder.

To calculate the number of particles left, a two-layer fully
connected network was used. Again, the network was not
trained at every location, but it was combined to make a
generalized particle loss predictor for the same reasons stated
above.

RESULTS

The model was tested on a separately generated dataset
using the same parameters for the original and non-linear
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dataset. Only the initial distributions were given, but the
model would still predict the 2D projections and beam trans-
mission at the other locations downstream. Then, to test the
generalization of the model, a nonlinear field in the form of a
sextupole [13] was added to the beginning of the simulation
to generate a dissimilar subset of inputs.

For reference, an error of less than 1%, or 100 particles,
for losses within 2 standard deviations from the mean would
be sufficiently good for the prediction of the loss on ATLAS
since it is a relatively low power machine. For the rest of the
paper, the percentage refers to the maximum bound within
2 standard deviation. The error is defined as the absolute
difference between the ground truth and the predicted values
divided by the total number of particles. The obtained values
were plotted in Fig. 3A as a correlation graph. If there
were no error, then there would be a perfectly straight line.
Given the total number of particles is 10%, and a maximum
2 standard deviation error for the original data set using six
projections is 263 particles, the error would be around 3%.

This was then tested on the nonlinear sextupole distri-
bution with fair results, an error of around 5.5% as shown
in Fig. 3C. The model was able to generalize fairly well,
however, it is still far from the ideal case.

Since random setting on accelerators usually results in
high loss, most of the dataset would be skewed towards high
loss, resulting in higher accuracy in those cases for the model
since there is more data in those cases. To analyze this effect,
the dataset was split into bins and as expected, the bin of
particle loss between 9000 — 10000 has an error around 2.5%
and for the bin of particle loss between 0 — 1000, the error
was as high as 5%.

Testing on a Smaller Data Set

The same model was tested again, but with the
(x,¥"), (x’,y"), and (y,x”) projections removed. In Fig. 3B,
the error predictions from the original data set show an im-
provement in the accuracy for “Loss: 0” while it has around
the same error for the other losses. This is likely due to
overfitting as the predictions from the non-linear data set
show a loss of accuracy overall as seen in Fig. 3D; however,
the model was shown to work with half the image data used,
making this model more practical.

CONCLUSION

A proof-of-principle machine learning based model has
been reported to test a ML-based 4D tomography using its
2D projections and its capability to predict the beam trans-
mission. The result shows that if given only three projections
of the 4D phase space, the projections can be reduced into a
smaller latent dimension that contains the core information,
which can then be used to predict the beam transmission
downstream. The latent dimension was verified to have
contained the core information through a decoder which
correctly reconstructed the encoded images. This method
generalizes fairly well to initial beam distributions with non-
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Figure 3: Histogram of original data set using six projec-
tions (A), and same model but using three projections (B).
Histogram of original data set using six projections (C), and
same model but using three projections (D).

linear perturbations, showing robustness and the potential
to model the real machine.

Before applying this method to a real machine, it should
be noted that this is a simplified model of an actual acceler-
ator. First, this model assumes that the accelerator elements
can be modeled by a single parameter. Therefore, more com-
plicated effects, such as misalignment of the magnets and
the longitudinal overlapping of transverse magnets, are not
considered. Second, the model assumes the 2D projections
can be precisely measured with no errors. Measurement
errors exist, but they can be reduced by taking multiple mea-
surements with different optics settings, which was not done
in our simplified model.

To use this method in experiments methods known as
“transfer learning” will have to be tested. This allow knowl-
edge learned from the source dataset to be transferred to
a target dataset [10]. This is done by freezing the model,
adding an extra layer, and training that layer with the frozen
model on the real machine. After that, the whole model can
then be unfrozen and trained with a much smaller learning
rate in order to fine-tune the model.

Finally, this work assumes no accelerator knowledge, but
further research will involve incorporating physics into the
model. Some ways this could be done is by encoding con-
straints in the loss function during model training or by
incorporating domain knowledge by including the transfer
matrices in the calculation as a prior information. The pos-
itive results of this work give hope that incorporating this
knowledge may save time, increase sample efficiency, and
further reduce the beam transmission error.
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