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Abstract
Accurate spin tracking is essential for the simulation and

propagation of polarized beams, in which a majority of the
particles’ spin point in the same direction. Bmad, an open-
sourced library for the simulation of charged particle dynam-
ics, traditionally tracks spin via integrating through each ele-
ment of a lattice. While exceptionally accurate, this method
has the drawback of being slow; at best, the runtime is pro-
portional to the length of the element. By solving the spin
transport equation for simple magnet elements, Bmad can
reduce this algorithm to constant runtime while maintaining
high accuracy. This method, known as "Sprint," enables
quicker spin matching and prototyping of lattice designs via
Bmad.

INTRODUCTION
The Thomas-BMT equation describes the way that a par-

ticle’s spin is perturbed via magnetic fields. At every point
in phase space, a particle’s spin ®𝑆 precesses about the vector
®Ω(𝑧) according to the differential equation:

𝑑 ®𝑆
𝑑𝑠

= ®Ω(𝑧, 𝑠) × ®𝑆. (1)

Solutions to Eq. (1) are of the form ®𝑆(𝑠) = 𝑅(𝑧, 𝑠) ®𝑆0, where
𝑅 is a rotation matrix in 𝑆𝑂 (3). One caveat is that the Bmad
library uses quaternions to represent the net spin rotation,
rather than matrices. Quaternions are a noncommutative
associative extension of the imaginary numbers that follow
the rule i2 = j2 = k2 = ijk = −1. Quaternions need fewer
computations than matrices to calculate a 3d rotation, and
are thus preferable for computer applications. A quaternion
rotation of angle 𝜃 about the unit vector ®𝑒 = 𝑒𝑥𝑥 + 𝑒𝑦 �̂� + 𝑒𝑧𝑧
looks like:

𝑞 = cos
(
𝜃

2

)
+𝑒𝑥 sin

(
𝜃

2

)
i+𝑒𝑦 sin

(
𝜃

2

)
j+𝑒𝑧 sin

(
𝜃

2

)
k . (2)

The rotation resulting from two successive rotations 𝑞0
and 𝑞1 is described by the product 𝑞1𝑞0. Equation (1) de-
scribe an infinitesimal rotation around the vector ®Ω by the
angle | ®Ω|𝑑𝑠. The quaternion characterizing this rotation
is therefore 𝑑𝑄 = 1 + 𝑑𝑠 1

2 (Ω𝑥 i + Ω𝑦j + Ω𝑧k) [1]. The to-
tal rotation 𝑞(𝑠) then changes along 𝑠 with the differential
equation:

𝑑𝑞

𝑑𝑠
=

1
2
Ω𝑞 , Ω = Ω𝑥 i +Ω𝑦j +Ω𝑧k . (3)

Bmad can compute quaternions by numerically integrat-
ing Eq. (3) via interfacing with Etienne Forest’s PTC code
[2]. However, if Eq. (3) is linearized with respect to the
phase space deviations from the accelerator’s design orbit,
one can compute the quaternions analytically for the typical
magnet types. To do so, we split ®Ω into a constant term ®Ω0
and a first-order term ®𝜔 [3]. With 𝑔 as the bend strength, 𝑘1
as the quadrupole strength, and 𝑘𝑠 as the solenoid strength,
this Ω is

Ω0𝑥 = 0 (4a)
Ω0𝑦 = −𝑎𝛾𝑔 (4b)
Ω0𝑠 = − (1 + 𝑎) 𝑘𝑠 (4c)

𝜔𝑥 =

[
(1 + 𝑎𝛾)

(
−𝑘1𝑦 +

1
2
𝑘 ′𝑠𝑥

)
+ (𝑎𝛾 − 𝑎) 𝑘𝑠𝑥 ′

]
(5a)

𝜔𝑦 =

[
(1 + 𝑎𝛾)

(
−𝑔2𝑥 − 𝑘1𝑥 +

1
2
𝑘 ′𝑠𝑦

)
+

(𝑎𝛾 − 𝑎) 𝑘𝑠𝑦′ +
(
1 + 𝑎

𝛾

)
𝑔𝛿

]
(5b)

𝜔𝑠 =

[
(1 + 𝑎𝛾) (−𝑔′𝑦 + 𝑘𝑠𝛿) +

(𝑎𝛾 − 𝑎) (𝑔𝑦′ + 𝑔′𝑦 − 𝑘𝑠𝛿)
]
. (5c)

On the design orbit, the rotation resembles simple har-
monic precession about ®Ω0. Denoting this 0th order so-
lution by the quaternion 𝑞0, we write the full solution as
𝑞 = (𝑞0 + Δ𝑞) = 𝑞0 (1 + Δ𝑏), with Δ𝑏 =

Δ𝑞

𝑞0
. Equation (3),

𝑑

𝑑𝑠
(𝑞0 (1 + Δ𝑏)) = 1

2
Ω𝑞 (6)

leads to the zeroth and first order expansions:

𝑞′0 =
1
2
Ω0𝑞0 , 𝑞′0Δ𝑏 + 𝑞0Δ𝑏

′ =
1
2
Ω0Δ𝑏 + 1

2
𝜔𝑞0 (7)

leading to:
Δ𝑏′ =

1
2
𝑞−1

0 𝜔𝑞0 . (8)

For the linear phase space function 𝜔 in Eq. (5), Δ𝑏 was
integrated analytically.

Fringes were approximated using a hard-edge model, such
that the fringe strength approaches a Dirac-Delta function.
Misalignments were handled by shifting the center of the
Taylor map, such that the constant term of the series includes
the contributions from the misalignment.
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COMPARISONS WITH PTC
Figure 1 shows comparisons between PTC and the method

implemented by this paper ("Sprint") for equilibrium polar-
ization 𝑃𝑒𝑞 , and the time to reach this equilibrium 𝜏𝑑𝑘 .

Figure 1: Polarization comparisons between Sprint and PTC
on an EIC ESR 5.3 lattice, calculated via Bmad. PTC pro-
duces the data for this plot in roughly 2 hours, while Sprint
produces the data in 20 minutes.

CONCLUSION
Bmad now supports quick calculations of spin polariza-

tion and propagation for all basic magnet elements. These
results can be used for quick calculations of polarization
limits and rates, and improve Bmad’s capabilities for spin
matching. Spin matching can be performed by converting a
calculated quaternion into a 2x6 G-matrix and reducing the

value of 𝜕�̂�
𝜕𝛾

[2, 4]. The user can choose tracking method on
an element by element basis, so that more accurate results
can be obtained if deemed necessary.

APPENDIX
Tables 1-5 show the unnormalized calculated quaternions

𝑞 = 𝑞0 + 𝑞𝑥 i + 𝑞𝑦j + 𝑞𝑧k for basic magnet elements. To
calculate the exit fringe in Table 2, multiply all field strengths
𝑔 by -1 and replace all entrance face angles 𝑒1 with exit face
angles −𝑒2. To calculate the exit fringe in Table 4, multiply
all field strengths 𝑘𝑠 by -1. The negative exit face angle
is used due to Bmad convention [2]. These calculations
improve upon previous literature by including hard-edge
fringe fields, as well as distinguishing between different
quadrupole orientations [5, 6].
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Table 1: Constants Used for Quaternions

𝑑 = 𝑔𝑙 𝑒 = 𝑎𝑔𝑙𝛾 𝑠 = 𝑎𝑘𝑠𝑙 𝑡 = (1 + 𝑎)𝑘𝑠𝑙
𝑐𝑑 = cos(𝑑) 𝑠𝑒2 = sin( 𝑒2 ) 𝑐𝑠 = cos(𝑠) 𝑐𝑡 = cos(𝑡)
𝑠𝑑 = sin(𝑑) 𝑐𝑒2 = cos( 𝑒2 ) 𝑠𝑠 = sin(𝑠) 𝑠𝑡2 = sin( 𝑡2 )
𝜒 = 1 + 𝑎𝛾 𝜁 = 𝛾 − 1 𝜓 = 𝛾2 − 1 𝑐𝑡2 = cos( 𝑡2 )

Table 2: Sbend Entrance Fringe

𝒒0 𝒒𝒙 𝒒𝒚 𝒒𝒛

1 1
𝑥 1

2 𝜒𝑔 tan(𝑒1)
𝑦 1

2 (1 + 𝑎)𝑔 sin(𝑒1) − 1
2 (1 + 𝑎)𝑔 cos(𝑒1)

Table 3: Sbend Body with Overlayed Quadrupole

𝑘𝑥 = 𝑘1 + 𝑔2 𝛼 = 2(𝑎2𝑔2𝛾2 + 𝑘1)
𝜔𝑥 =

√︁
|𝑘𝑥 | 𝛽 = 𝑎𝑔𝑘1 (𝛾𝜒 − 𝜁)

𝜔𝑦 =
√︁
|𝑘1 | 𝜎 = 𝜔𝑦 (𝑘1 + 𝑎𝑘1𝛾 + 𝑎2𝑔2𝜁𝛾)

𝜉 = 𝜔𝑦 (𝑘1𝜒 + 𝑎2𝑔2𝜁𝛾)

𝑘𝑥 > 0 𝑘𝑥 < 0 𝑘1 > 0 𝑘1 < 0
𝑠𝑥 = sin (𝑙𝜔𝑥) sinh (𝑙𝜔𝑥) 𝑠𝑦 = sinh (𝑙𝜔𝑦) sin (𝑙𝜔𝑦)
𝑐𝑥 = cos (𝑙𝜔𝑥) cosh (𝑙𝜔𝑥) 𝑐𝑦 = cosh (𝑙𝜔𝑦) cos (𝑙𝜔𝑦)

𝜏𝑥 = −1 +1 𝜏𝑦 = +1 −1
𝒒0 𝒒𝒙 𝒒𝒚 𝒒𝒛

1 𝑐𝑒2 −𝑠𝑒2
𝑥

−𝑘𝑥𝜒
2𝜔𝑥

𝑠𝑥𝑠𝑒2
−𝑘𝑥𝜒
2𝜔𝑥

𝑠𝑥𝑐𝑒2

𝑝𝑥
𝑘𝑥𝜒

2𝜔2
𝑥
𝜏𝑥 (1 − 𝑐𝑥)𝑠𝑒2

𝑘𝑥𝜒

2𝜔2
𝑥
𝜏𝑥 (1 − 𝑐𝑥) 𝑐𝑒2

𝑦 −1
𝛼
[𝛽(1 + 𝑐𝑦)𝑠𝑒2 + 𝜏𝑦𝜎𝑠𝑦𝑐𝑒2] 1

𝛼
[𝛽(1 − 𝑐𝑦)𝑐𝑒2 + 𝜏𝑦𝜎𝑠𝑦𝑠𝑒2]

𝑝𝑦
1

𝜔𝑦𝛼
[𝜉 (1 − 𝑐𝑦)𝑐𝑒2 − 𝛽𝑠𝑦𝑠𝑒2] 1

𝜔𝑦𝛼
[𝜉 (1 + 𝑐𝑦)𝑠𝑒2 − 𝛽𝑠𝑦𝑐𝑒2]

𝑝𝑧
𝑔

2

(
𝜒𝑠𝑥
𝜔𝑥

− 𝑎𝑙𝜓

𝛾

)
𝑠𝑒2

𝑔

2

(
𝜒𝑠𝑥
𝜔𝑥

− 𝑎𝑙𝜓

𝛾

)
𝑐𝑒2

Table 4: Solenoid Entrance Fringe

𝒒0 𝒒𝒙 𝒒𝒚

1 1
𝑥 1

4 𝑘𝑠𝜒

𝑦 1
4 𝑘𝑠𝜒

Table 5: Solenoid Element Body

𝒒0 𝒒𝒙 𝒒𝒚 𝒒𝒛

1 𝑐𝑡2 −𝑠𝑡2
𝑥 1

4 𝑘𝑠𝜁 ((1 − 𝑐𝑠)𝑐𝑡2 − 𝑠𝑠𝑠𝑡2) 1
4 𝑘𝑠𝜁 ((−1 + 𝑐𝑠)𝑠𝑡2 − 𝑠𝑠𝑐𝑡2)

𝑝𝑥
1
2 𝜁 ((1 − 𝑐𝑠)𝑠𝑡2 + 𝑠𝑠𝑐𝑡2) 1

2 𝜁 ((1 − 𝑐𝑠)𝑐𝑡2 − 𝑠𝑠𝑠𝑡2)
𝑦 1

4 𝑘𝑠𝜁 ((1 − 𝑐𝑠)𝑠𝑡2 + 𝑠𝑠𝑐𝑡2) 1
4 𝑘𝑠𝜁 ((1 − 𝑐𝑠)𝑐𝑡2 − 𝑠𝑠𝑠𝑡2)

𝑝𝑦
1
2 𝜁 ((−1 + 𝑐𝑠)𝑐𝑡2 + 𝑠𝑠𝑠𝑡2) 1

2 𝜁 ((1 − 𝑐𝑠)𝑠𝑡2 + 𝑠𝑠𝑐𝑡2)
𝑝𝑧

1
2 𝑡𝑠𝑡2

1
2 𝑡𝑐𝑡2
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