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Abstract
Fringe field effects in dipoles can give rise to important

linear and nonlinear contributions. This paper describes
how to extend the classic results of Brown (SLAC Tech. Rep.
SLAC-R-75) and the more recent calculations of Hwang and
Lee (doi:10.1103/PhysRefSTAB.18.122401) to Cartesian
dipoles with transverse and/or longitudinal gradients. We do
this by 1) introducing a more general definition of the fringe
field that can be applied to longitudinal gradient dipoles,
2) allowing for quadrupole and/or sextupole content in the
magnet body, and 3) showing how to employ the resulting
fringe maps as a symplectic transformation of the coordi-
nates. We compare our calculation results with tracking
for longitudinal and transverse gradient dipoles planned for
APS-U.

THEORY
This paper describes how to extend the classic results of

Brown [1] and the more recent calculations of Hwang and
Lee [2] to Cartesian dipoles with transverse and/or longi-
tudinal gradients. Cartesian dipoles have straight magnetic
poles parallel to the 𝑧-axis. In this case we can write the
dimensionless magnetic vector potential 𝑎 = 𝑒𝐴/𝑝0 in a
gauge with vertical component 𝐴𝑦 = 0 as

𝐴𝑧 = 𝑥
𝜌𝐷(𝑧) + 𝑥3 − 3𝑥𝑦2

6𝜌𝐵0

𝜕2𝐵𝑦

𝜕𝑥2 + 𝑥2 − 𝑦2

2 𝐾𝑄(𝑧)

− 𝑥4 − 6𝑥2𝑦2 − 𝑦4

48 𝐾𝑄″(𝑧)
(1)

𝐴𝑥 = 𝑦2

2𝜌𝐷′(𝑧) − 8𝑦4

192𝜌𝐷‴(𝑧)

+ 6𝑥2𝑦2 − 𝑦4

24𝜌𝐵0

𝜕2𝐵′
𝑦

𝜕𝑥2 + 𝑥𝑦2

2 𝐾𝑄′(𝑧),
(2)

where the dimensionless, on-axis dipole and quadrupole
field profiles are related to the generalized gradient repre-
sentation [3] via

𝐷(𝑧) = 𝑞𝜌
𝑝0

𝐶1(𝑧) 𝑄(𝑧) = 2𝑞
𝐾𝑝0

𝐶2(𝑧), (3)

while the field curvature term

1
𝜌𝐵0

𝜕2𝐵𝑦

𝜕𝑥2 = − 𝑞
𝑝0

[1
4𝐶″

1 (𝑧) − 6𝐶3(𝑧)] . (4)

The hard edge model approximates the full field depen-
dence using piece-wise constant regions. We illustrate this in
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Fig. 1, where we define the hard edge locations by matching
the integrated bending field such that

∫
𝑧+

𝑧−
𝑑𝑧 𝐵𝑦(0, 0, 𝑧) = ∫

𝑧+

𝑧−
𝑑𝑧 𝐶1(𝑧)

= (𝑧+ − 𝑧edge)Π1(𝑧+) + (𝑧edge − 𝑧−)Π1(𝑧−),
(5)

where the step function Π1(𝑧) is defined in terms of the
Heaviside function as

Π1 = 𝐶1(𝑧+)Θ(𝑧 − 𝑧edge) + 𝐶1(𝑧−)Θ(𝑧edge − 𝑧). (6)

The edge models for quadrupole and sextupole components
are defined by 𝑧edge and their maxima/minima at 𝑧±, while the
difference between the actual fields from Eqs. (1) and (2)
and the hard edge model defines the fringe fields. The full
particle motion is governed by the expanded, dimensionless
Hamiltonian

ℋ(𝑥, 𝑝, 𝛿; 𝑧) ≈ (𝑝𝑥 + 𝑎𝑥)2 sec3 𝜃
2(1 + 𝛿) +

𝑝2
𝑦 sec 𝜃

2(1 + 𝛿) − 𝛿

+ 𝛿 cos 𝜃 + (𝑝𝑥 + 𝑎𝑥) tan 𝜃 + 𝑎𝑧,
(7)

while the fringe field corrections are defined by the difference
of ℋ and the hard edge Hamiltonian

ℋ0 = sec3 𝜃
2(1 + 𝛿)𝑝2

𝑥 + sec 𝜃
2(1 + 𝛿)𝑝2

𝑦 − 𝛿 + 𝛿 cos 𝜃

+ 𝑝𝑥 tan 𝜃 + 𝑥 𝑞
𝑝0

Π1(𝑧) + (𝑥2 − 𝑦2) 𝑞
𝑝0

Π2(𝑧)

+ (𝑥3 − 3𝑥𝑦2) 𝑞
𝑝0

Π3(𝑧).

(8)

Our perturbation theory proceeds by first defining
B0(𝑧|𝑧−) to be the unperturbed map from 𝑧− → 𝑧 asso-
ciated with ℋ0. Then, the full map M for ℋ0 + ℋ1 can
be written using the “reverse factorization” [4] as M =
B1(𝑧|𝑧−)B0(𝑧|𝑧−), where B1 accounts for ℋ1 such that

− 𝑑
𝑑𝑧B1 = B1 (B0 :ℋ1: B−1

0 ) = B1 :ℋint
1 : . (9)

We diagram these maps in Fig. 1. The fringe field map F
obtains by sandwiching the full dipole field map M between
unperturbed dipole maps B0 to and from the edge:

F = B0(𝑧−|0)MB0(0|𝑧+)
= B0(𝑧−|0)B1(𝑧+|𝑧−)B0(0|𝑧−). (10)

Finally, the fringe field map at the hard edge is written using
the Magnus operator F = 𝑒 :Ω𝑀: with Lie generator

Ω𝑀 = −
𝑧+

∫
𝑧−

𝑑𝑧 ℋint
1 (𝑧|0)

+ 1
2

𝑧+

∫
𝑧−

𝑑𝑧
𝑧

∫
𝑧−

𝑑𝜁 :ℋint
1 (𝜁|0): ℋint

1 (𝑧|0) + …
(11)
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Figure 1: On the top left is the on-axis field profile (red)
and hard edge model (blue) at the entrance edge where 𝐵𝑦
starts from zero at 𝑧− and reaches a maximum at 𝑧+. On the
top right the difference between the red and blue shows the
more complicated fringe in a longitudinal gradient dipole.
The bottom two panels illustrate the corresponding maps for
these two cases.

The fringe field correction at the hard edge for, e.g., the
vertical coordinate, is then Δ𝑦 = (𝑒 :Ω𝑀: − 1)𝑦0.

The resulting fringe field maps include hard edge general-
izations of [1] such as

Δ𝑥 = sec3 𝜃
2(1 + 𝛿)

𝑦2
0

𝜌 → sec3 𝜃
2(1 + 𝛿) [

𝑦2
0

𝜌+
−

𝑦2
0

𝜌−
] (12)

Δ𝑝𝑦 = −𝑦0
𝜌 [tan 𝜃 + sec3 𝜃

1 + 𝛿 𝑝𝑥,0]

→ [ 𝑦0
𝜌−

− 𝑦0
𝜌+

] [tan 𝜃 + sec3 𝜃
1 + 𝛿 𝑝𝑥,0] (13)

and new quadrupole corrections including

Δ𝑥|new =
1 − 3

2 tan2 𝜃
cos3 𝜃(1 + 𝛿)

(𝑔2𝐾𝐼1)𝑥0 (14)

Δ𝑦|new = − sec 𝜃
1 + 𝛿(𝑔2𝐾𝐼1)𝑦0 (15)

Δ𝑝𝑥|new = −
(1 − 3

2 tan2 𝜃)
cos3 𝜃(1 + 𝛿)

(𝑔2𝐾𝐼1)𝑝𝑥,0

− tan 𝜃
4 (𝐾+ − 𝐾−)(𝑥2

0 + 𝑦2
0)

(16)

Δ𝑝𝑦|new = sec 𝜃
1 + 𝛿(𝑔2𝐾𝐼1)𝑝𝑦,0

− tan 𝜃
2 (𝐾+ − 𝐾−)𝑥0𝑦0

(17)

Figure 2: (a) Fringe Δ𝑦 and Δ𝑝𝑦 vs. initial 𝑦0 and 𝑝𝑦,0 scaled
such that Eqs. (15) and (17) predict the lines 𝑦 = ±𝑥. (b)
Δ𝑝𝑥 corrected by the theory’s offset 𝑝𝑥orbit (red), and by an
empirically found focusing ∝ 𝑔3𝐾2𝑥0. The offset is scaled
so Eq. (16) follows 𝑦 = ±𝑥2 (cyan).

where 𝑔 is the magnetic gap the quadrupole fringe integral

𝐼1 = 2𝑞
𝑔2𝐾𝑝0

∫
𝑧+

𝑧−
𝑑𝑧 (𝑧 − 𝑧edge)

× {𝐶2(𝑧) − 𝐶2(𝑧+)Θ(𝑧) − 𝐶2(𝑧−)[1 − Θ(𝑧)]} .
(18)

COMPARISON WITH TRACKING
Our first comparison is for an idealized fringe field,

wherein we assume that the on-axis variation follows the
Enge function 1/(1 + 𝑒−𝑧/𝑔) [5]. For this case we model
the 𝐵-field using the one-parameter dipole and quadrupole
solutions provided in Ref. [6], and use tracking to evaluate
the fringe field map using the following four steps:

1. Initialize coordinates on the hard edge 𝑧 = 𝑧edge = 0.
2. Drift particles to 𝑧 = −10𝑔, where 𝐵 ≈ 0.
3. Track particles through exact magnetic field to 𝑧 = 10𝑔,

where 𝐵 ≈ constant.
4. Back-track the particles to the hard edge 𝑧 = 0 using

the ideal 𝐵 = (𝑝0/𝑞)(1/𝜌 + 𝐾𝑦, 𝐾𝑥, 0).

We summarize results of numerous tracking studies for a
wide range of input coordinates, entrance angles 𝜃, magnetic
gaps 𝑔, and quadrupole strengths 𝐾 in Fig. 2. Panel (a)
plots the vertical magnification-like terms from Eqs. (15)
and (17), where the indepedent variable was scaled such that
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Figure 3: (a) A:M1 longitudinal gradient dipole field and
reference orbit. The hard edges of each magnetic segment are
marked with black circles. (b) Comparison of tracking (red
solid lines) with theory (blue dashed lines) for the fringe field
corrections Δ𝑝𝑥 as a function of input 𝑥0 at each hard edge.
The lines are displaced by the fringe number 0 ≤ 𝑓 ≤ 5 for
clarity. (c) Analogous comparisons of tracking and theory
for the vertical focusing Δ𝑝𝑦 at each edge.

the theory predicts lines with unit slopes. Panel (b) tests
the second order corrections to 𝑝𝑥, where the red ones are
as measured, while the blue also correct for an additional
focusing term that is third-order in the gap. The theory lines
are the parabolas 𝑦 = ±𝑥2.

For the next test, we consider the APS-U’s A:M1 longi-
tudinal gradient dipole [7, 8]. As shown in Fig. 3(a), the
longitudinal variation is achieved by varying the field over
five nearly constant steps, so that there are six hard edges

Table 1: Tune predictions for the APS-U using three different
models for the Q4 reverse bend quadrupole.

Model 𝜈𝑥 𝜈𝑦
BGGEXP 94.9856 36.0878

CCBEND+Fringe 94.9832 36.0872
CCBEND+No Fringe 95.0038 36.1560

as indicated by the black circles. Within each segment the
hard edge model entails dipole, quadrupole, and sextupole
components, while we also have six fringe field maps at
each edge. We compare tracking with theory by applying
the same four steps as before, but now in step 2 we track the
particles using the hard edge field.

We compare the resulting predictions for the horizontal
fringe maps Δ𝑝𝑥 in Fig. 3(b). Both theory and tracking
results are displaced by the fringe number 𝑓 for clarity; we
find that the the horizontal offset leads to both focusing
and quadratic contributions. Figure 3(c) shows a similar
comparison for the vertical plane. In this case we see mostly
vertical focusing, which again is designed to approximately
cancel any body focusing over the entire magnet.

elegant TRACKING
We have added the fringe field model to elegant’s

CCBEND [9, 10], and then compared the resulting models
against tracking in the full field. The APS-U lattice [11] uses
several reverse bends [12, 13], two of which (Q4 and Q5)
are straight magnets. In tests with the Q4 dipole [7], we
have found that the linear matrix elements without the fringe
field contributions agree to within 0.15%. Although this
seems reasonably good, we have found that it is not suf-
ficient to usefully predict the APS-U tune. Including the
fringe field corrections reduces the discrepancy in linear
matrix elements to the level of a few times 10−4. As shown
in Table 1, this leads to nearly indistinguishable results from
full-field tracking.

This theory has been used in the LGBEND (longitudi-
nal gradient bend) element, which models straight dipoles
with an arbitrary number of segments. The fringe inte-
grals for CCBEND and LGBEND can be easily evaluated using
the companion program straightDipoleFringeCalc,
which uses a generalized gradient expansion (GGE) to pro-
vide fields necessary to define the magnet edges and per-
form the fringe integrals. The GGE can be produced us-
ing two other companion programs, computeCBGGE and
computeRBGGE [14], which compute the GGE from data
on cylindrical or rectangular cylinders, respectively. For
LGBEND, the straightDipoleFringeCalc also requires
the beam trajectory, which can be provided by using the GGE
with elegant’s BGGEXP element. In this case, the output is
a file that provides parameters for the edges and segments,
which is then loaded by the LGBEND element. Comparison of
LGBEND to the much slower BGGEXP shows excellent agree-
ment.
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