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Abstract
We analyze the dynamics of multibunch longitudinal in-

stabilities including bunch-by-bunch feedback under the as-
sumption that the synchrotron tune is small. We find that
increasing the feedback response does not always guarantee
stability, even in the ideal case with no noise. As an example,
we show that if the growth rate of a cavity-driven mode is
of the order of the synchrotron frequency, then there are
parameter regions for which the instability cannot be con-
trolled by feedback irrespective of its gain. We verify these
calculations with tracking simulations relevant to the APS-
U, and find that the dynamics do not depend upon whether
the longitudinal feedback relies on phase-sensing or energy-
sensing technology. Hence, this choice should be dictated
by measurement accuracy and noise considerations.

THEORY
We will investigate multibunch stability in the presence

of longitudinal feedback. For simplicity we assume that the
ring is uniformly filled, and that all perturbing wakefields
are approximately constant over each bunch. In this case the
complex frequency Ω describing multibunch oscillations of
mode 𝜇 satisfies the following dispersion relation:
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Here, 𝐼tot is the total current, 𝛼𝑐 is the momentum com-
paction, 𝜎𝑧 = 𝑐𝜎𝑡 and 𝜎𝛿 are rms bunch length and energy
spread, respectively, 𝑇0 = 2𝜋/𝜔0 is the revolution period,

̄𝐹(ℐ) and 𝑧𝑚(ℐ) are the equilibrium distribution function of
action ℐ and the 𝑚th Fourier component of the longitudinal
coordinate 𝑧, while for 𝑀 bunches 𝜔𝑝,𝜇 = 𝜔0(𝑝𝑀 +𝜇)+Ω.
The first term in square brackets includes the long-range
wakefields, while the second contains the feedback of gain
𝐺 and 𝒞𝑝 that we describe shortly.

We will illustrate the basic stability properties contained
in Eq. (1) by restricting ourselves to a specific form for the
long-range wakefield. In particular, we consider longitudinal
instabilities driven by a single higher-order mode (HOM)
in the rf system, in which case the sum over the long-range
impedance can be limited to the single term where the HOM
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resonance line most closely overlaps a revolution harmonic.
Then, we can reduce the dispersion relation to
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where we define the nominal growth rate Λ and normal-
ized detuning 𝜛 in terms of the HOM shunt impedance 𝑅𝑠,
quality factor 𝑄 ≫ 1, and frequency 𝜔HOM via

Λ = 𝜎𝑡𝜔HOM𝐼tot𝑅𝑠
2𝜎𝛿(𝛾𝑚𝑐2/𝑒)𝑇0

, 𝜛 = 2𝑄𝜔HOM − 𝑝𝜔0 − Ω
𝜔HOM

. (3)

We assume that the effect of the feedback is given by a
finite impulse response (FIR) filter whose coefficients are
determined by a least-square fit of the phase’s derivative [1]:
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We will furthermore assume that the feedback samples the
longitudinal motion over a “short” number of turns, so that
𝑁𝑇0 is much smaller than both the synchrotron period and
the growth time of the instability. Then, we expand the feed-
back sum to lowest order in Ω𝑇0, in which case our results
match those for both the usually employed sin-wave FIR fil-
ter [2] and for a simple energy-detection based system; this
is because all these feedbacks contribute to the dispersion
relation as the derivative of the bunch position ∝ −𝑖Ω𝑇0.

Let’s first assume that the longitudinal rf potential is
quadratic in 𝑧. The resulting simple harmonic motion has
2𝜋𝜎𝛿𝜎𝑧 ̄𝐹(ℐ) = 𝑒−ℐ/𝜎𝑧𝜎𝛿 and 𝑧±1 = 𝜎𝑧√ℐ/2𝜎𝑧𝜎𝛿, so
that the dispersion relation reduces to
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Solutions to Eq. (5) give the complex frequencies Ω for a
storage ring in which longitudinal feedback works to stabi-
lize multibunch oscillations driven by a single higher-order
cavity mode. While it is straightforward to solve numerically,
we will make a few additional simplifications.

First, we assume that the width of the HOM reso-
nance is much broader than the complex mode frequency,
𝜔HOM/2𝑄 ≫ |Ω|. The APS-U cavities have HOMs whose
widths are typically a few kHz, while |Ω| /2𝜋 ∼ 𝜔𝑠/2𝜋 ≲
400 Hz. This implies that we can neglect the contribution
of Ω to the detuning 𝜛. Next, we assume that the FIR feed-
back filter retains a small number of turns such that both
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𝜔𝑠𝑇0 and ∣Ω𝑇0∣ are much less than 1/𝑁. Under these two
assumptions we obtain a quadratic equation with solutions

Ω± = − 𝑖𝐺
2𝑇0

± [𝜔2
𝑠 − 𝐺2

4𝑇2
0

+ 2𝑖𝜔𝑠Λ
1 − 𝑖𝜛
1 + 𝜛2 ]

1/2

. (6)

Instability is indicated when ℑ(Ω) > 0. We will compare
the general solution to simulations shortly, but before that
we consider two simple limits.1

In the first limit, we assume that the synchrotron frequency
is much larger than either the damping provided by the feed-
back or the growth from the instability. Mathematically this
amounts to expanding the square root in (6) assuming that
𝜔𝑠 ≫ 𝐺/𝑇0 and 𝜔𝑠 ≫ Λ, which gives

Ω± ≈ ±𝜔𝑠 (1 + Λ
𝜔𝑠

𝜛
1 + 𝜛2 ) − 𝑖 ( 𝐺

2𝑇0
− Λ

1 + 𝜛2 ) . (7)

This limit corresponds to an oscillator that is weakly per-
turbed by the feedback and the HOM, and is common in
the literature. The mode oscillates with a frequency that is
shifted from 𝜔𝑠 by the small amount ∝ Λ/𝜔𝑠. In addition,
the feedback results in an effective damping rate 𝐺/2𝑇0, so
that the mode is damped or grows depending upon whether
𝐺/2𝑇0 is larger or smaller than the instability growth rate
Λ/(1 + 𝜛2).

The other limit we want to consider is when the feedback
gain is chosen to be as large as possible to maximally damp
any instability. In this idealization we take 𝐺 ≫ 𝜔𝑠𝑇0 and
𝐺 ≫ |Ω| 𝑇0, and find that one mode is stable and decays as
𝑒−𝑖Ω−𝑠/𝑐 ≈ 𝑒−(𝐺/𝑇0)𝑠/𝑐, while the other, potentially unstable
mode has the complex frequency

Ω+ ≈ 2𝜔𝑠Λ𝑇0
𝐺(1 + 𝜛2)

− 𝑖𝜔𝑠
𝐺 (𝜔𝑠𝑇0 + 2Λ𝑇0𝜛

1 + 𝜛2 ) . (8)

Hence, when the HOM frequency is just below a revolution
harmonic, 𝜛 < 0, we find that an instability exists when

− 2Λ𝜛
1 + 𝜛2 > 𝜔𝑠 (9)

regardless of the feedback gain 𝐺. The left-hand side is
maximized when 𝜛 = −1 for which Λ > 𝜔𝑠 implies insta-
bility. Furthermore, if the nominal growth rate Λ ≳ 2𝜔𝑠
the dynamics is unstable for a range of negative detunings,
while stability reigns when 𝜛 ≥ 0.

To summarize, we find that when the feedback and HOM
wakefields are weak perturbations Eq. (7) implies stability is
guaranteed if 𝐺 > Λ𝑇0/2. On the other hand, the high gain
limit leads to stable motion for positive detunings 𝜛 ≥ 0, but
an instability can arise for 𝜛 < 0 when Λ > 𝜔𝑠 regardless
of the feedback gain.

TRACKING SIMULATIONS
To verify our conclusions, we performed a number of

multibunch elegant simulations [3, 4]. Our simulations
1 Synchrotron emission can be added to the harmonic potential results by

replacing 𝐺/𝑇0 → 𝐺/𝑇0 + 2/𝜏𝑧 for longitudinal damping time 𝜏𝑧.
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Figure 1: Regions of multibunch stability as a function of the
HOM detuning 𝜛. Theory predicts that the regions below
the purple, green and blue lines are stable for feedback gains
labelled. The points plot results from elegant simulations
that assume 𝐺 = 0.04 and 𝐺 = 0.005; the top/right or
bottom/left of the “error bars” indicate parameters where
tracking displays unstable or stable motion, respectively. The
yellow cross-hatched region is predicted to be unstable for
any feedback gain 𝐺 < 1.

tracked 48 bunches for 100K turns through the RC4 vari-
ant of the APS-U lattice, whose linear and lowest-order
nonlinearities were modeled using the ILMATRIX element.
Synchrotron radiation was applied once per turn using the
SREFFECTS element, and an RFMODE element simulated one
cavity HOM whose frequency is near 921 MHz and cho-
sen to exite the 𝜇 = 29 coupled-bunch mode with fixed
𝑄 = 10.4 × 104 and variable 𝑅𝑠 and detuning 𝜛. Longi-
tudinal feedback was applied using paired TFBPICKUP and
TFBDRIVER elements that transform the detected phase to
an energy kick via a 10-term FIR filter whose coefficients
are given in Eq. (4); we found nearly identical results if the
TFBPICKUP averages the energy centroid over 10 turns. Fi-
nally, the RF cavity parameters were chosen to set 𝜎𝑡 ≈ 52 ps,
which is the same bunch length as the planned dual rf system
tuned to flatten the potential.

We begin with an rf potential that is approximately
quadratic, and the “correct” 52 ps bunch length is obtained
by adopting a fictitious 39.1 MHz rf system with volt-
age 𝑉 = 3.78 MV. This gives a synchrotron frequency
𝜔𝑠/2𝜋 ≈ 167 Hz, and we expect that the “high gain
limit” discussed previously applies when the feedback gain
𝐺 ≳ 𝜔𝑠𝑇0 ≈ 4 × 10−3. When the growth rate becomes large
we found that the easiest way to identify an instability was
by monitoring the HOM voltage for evidence of exponential
growth.

We summarize our results in Fig. 1, where the endpoints
of the error bars indicate the boundaries of stabilty as found
in tracking. The theory Eq. (6) predicts that the regions
below the purple, green and blue solid lines are stable for
feedback gains of 𝐺 = 0.04, 0.01, and 0.005, respectively.
Furthermore, the yellow cross-hatched region is theoretically
predicted to be unstable for any feedback gain 𝐺 < 1.
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Figure 2: Regions of multibunch stability. The theory for a flattened potential is indistiguishable from that in Fig. 1, while
the simulation points on the left plot simulate the APS-U’s self-consistent double rf system with two RFMODE elements. The
right panel plots results for a self-consistent double rf system with no impedance (purple) and with the ring 𝑍∥/8 (red),
while the blue points employ prescribed rf fields modelled using RFCA elements.

For the next series of simulations we included the full
dynamics of the APS-U’s double rf system. Hence, we re-
turned the main rf frequency to 352 MHz, and simulated the
main cavities using 12 RFMODE elements that include beam
loading and whose cavity voltage and phase were maintained
with an rf feedback loop [5]. The bunch lengthening was
provided by a passive, 4th harmonic RFMODE cavity that had
𝑅𝑠 = 61.8 MΩ, 𝑄 = 6 × 105, and Δ𝑓 = 14.5 kHz.

We compare theory and tracking in Fig. 2. Here, the
theory solved the full dispersion relation (1) assuming that
the distribution function ̄𝐹(ℐ) and the Fourier harmonics
𝑧𝑚(ℐ) were those of a quartic oscillator. The resulting stabil-
ity predictions are practically identical to the findings for a
simple harmonic oscillator shown before, so that the scaled
Figures look identical if we divide the HOM strength by
𝛼𝑐𝜎𝛿/𝜎𝑡 ∼ 0.8⟨𝜔𝑠⟩. We compare the theory to the simula-
tion results on the left-hand side of Fig. 2. While the theory
predicts essentially no change from the simple harmonic
case, the simulations indicate that the maximum stable Λ is
reduced by about half.

Further investigations revealed that the simulation predic-
tions depend upon the details of the longitudinal potential.
We illustrate this the right-hand plot of Fig. 2, where we
consider several scenarios but only for a few detuning val-
ues and only with the gain 𝐺 = 0.04. The green line is the
theory, but now the tracking uses one of the following:

Purple Self-consistent RFMODE elements (same as left).
Red Prescribed, flattened potential from 2 RFCA elements.
Blue Same as purple but with the ring impedance 𝑍∥/8.

Tracking in a prescribed, flattened longitudinal potential
formed with two RFCA elements agrees quite well with the
theory, verifies our calculation. Additionally, tracking indi-
cates that the longitudinal impedance can increase stability
by a factor of two or more: the stability is doubled when we

add a ZLONGIT element with one-eighth of the longitudinal
impedance, which approximately gives the bunch length-
ening expected in 324 bunch mode; adding the impedance
of 𝑍∥/4 increases stability even further (not shown). In any
event, all cases display similar behavior, namely, that the
strong feedback effectively damps collective motion when
Δ𝜔HOM > 0, but can only control instabilities whose strength
Λ ≲ 𝛼𝑐𝜎𝛿/𝜎𝑡 when the detuning is small but negative.
Nevertheless, it appears that detailed predictions require
simulations that include all the details. This last finding is
somewhat surprising, and we still do not fully understand
why it should be true to the extent observed.

CONCLUSIONS
We have used theory and tracking to show that there are

cases when longitudinal feedback cannot damp instabilities,
even in the ideal case with no noise. These results are par-
ticularly relevant to ultra-low emittance rings for which the
instability growth rates can approach or even exceed the very
small synchrotron frequency. Our results are largely inde-
pendent of how the feedback is employed, so that the choice
of feedback scheme should be dictated by noise levels and
signal detection efficiency/accuracy.
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