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Abstract
In the Advanced Photon Source (APS) storage ring at

Argonne National Lab, trips in the magnet power supplies
(PSs) lead to a complete electron beam loss a few times a
year. This results in unexpected interruptions of the users’
experiments. In this contribution, we investigate the histor-
ical data for the last two decades to find precursors for the
PS trips that could provide an advance notice for future trips
and allow some preventive action by the ring operator or by
the PS maintenance team. Various unsupervised anomaly
detection models can be trained on the vast amounts of avail-
able reference data from the beamtime periods that ended
with an intentional beam dump. We find that such models
can sometimes detect trip precursors in PS currents, volt-
ages, and in the temperatures of magnets, capacitors and
transistors (components of PSs).

INTRODUCTION
In the APS storage ring, trips in the magnet power supplies

(PSs) lead to a complete electron beam loss about 7 times a
year, on average. This results in unexpected interruptions of
the users’ experiments. This paper explores the possibility of
using Machine Learning (ML) to give an advance warning
about an impending PS trip, so that a preventive action can
be taken by the operator or by the PS maintenance group.
We analyzed two decades of historical data. Since the total
number of recorded PS trips is relatively low (149), super-
vised ML methods cannot be used as they would be prone
to overfitting. Instead, we focus on unsupervised anomaly
detection methods, such as spectral residual saliency de-
tection [1] and neural network autoencoders, which can be
trained and tested on the vast amounts of available historical
data.

HISTORICAL DATA
There is a spreadsheet with detailed records for each APS

run dating back to 1997 [2]. The records include each beam
fill time, each beam dump time, and the reason for the beam
dump. We are interested in the records with an intentional
beam dump (end of period) and in the records with a beam
loss due to a magnet PS trip. More specifically, we focus on
trips in the PSs for quadrupoles, sextupoles, horizontal and
vertical correctors. The APS storage ring consists of 40 sec-
tors. The total number of considered PSs is 1320 [3, 4]. Sev-
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eral parameters of each PS and each magnet are constantly
monitored and logged. We analyzed magnet temperatures,
PS currents, voltages, capacitor temperatures, transistor tem-
peratures. The capacitors are used to smoothen the input
voltage. The transistors are used to regulate the currents in
the magnets. Quadrupole and sextupole PSs have one tran-
sistor each. PSs for horizontal and vertical correctors have
two transistors each, for positive and negative current. These
parameters are logged at 1 point per 64 seconds, and the
historical data go back to 2008. Another source of relevant
data is the independent noise monitor [5] for the PS currents.
Its raw-data acquisition rate is 100 Hz. However, only the
processed data are logged. First, the mean and the mean ab-
solute deviation (MAD) are calculated for every 500-sample
window. Then, for the two obtained quantities, the mini-
mum, the mean, and the maximum values are calculated in
a 64-second long window. The 6 obtained process variables
(MeanMin, MeanMean, MeanMax, MADMin, MADMean,
MADMax) are logged at 1 point per 64 seconds for the most
recent year. The older data are down-sampled to 1 point
per 10 minutes and go back to 2001. PS data are labeled by
the names of the corresponding magnets. Hence, the data
may not always refer to the same physical PS, because of
occasional PS replacements.

We analyzed the run history spreadsheets from 2001 to
2022 and found 629 beamtime periods that ended with an
intentional dump and 149 beamtime periods that ended with
a trip of one of the PSs (the records indicate which one). For
further analysis, we pulled the data from the data archive for
these beamtime periods and obtained 629 “reference” data
files and 149 “trip” data files. These files can be as short as
a half hour. However, most of them are several days long.

ANOMALIES IN TEMPERATURE DATA
The exact mechanism of most of the observed PS trips

is not well understood. However, there are scenarios, in
which a PS is programmed to trip, e.g., when the transis-
tor temperature reading reaches 50 °C. Further, there are
thermal switches on the magnets, which open and cause a
trip at 71 ± 3 ◦C (water-cooled magnets) and at 95 ± 3 ◦C
(air-cooled magnets). However, a thermal switch may open
before the temperature reading reaches the manufacturer
specified threshold, because the temperature is measured
independently. Clearly, one could create an algorithm that
warns the operator when the magnet temperature or the PS
temperature crosses a certain threshold. However, we wanted
to see whether there are more general anomaly detection
methods that would not only be sensitive to higher-than-
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Figure 1: (a) A map of quadrupole and sextupole temperatures (680 levels) for the last 3 hours of Fill #15 of Run
2019-3. This beamtime period ended with a trip of one of the PSs in sectors 19 and 20. Color represents temperature in
centigrade. Vertical axis represents the position around the storage ring. (b) Spectral residual saliency map, obtained from
the temperature map. (c) Anomaly map, obtained from the saliency map using a 0.5 anomaly threshold.

normal temperatures, but also to other less trivial anomalies,
that could be earlier signs of an impending trip.

One mechanism of PS trips is the following. Some mag-
nets and PSs are water-cooled. Each pair of adjacent ring
sectors has a shared cooling system with a single mixing
valve controlling the inflow of cold water. If a mixing valve
gets stuck and the cold water stops flowing into the sys-
tem, the temperature will start rising in the two neighboring
sectors. This signature may be detected before a fixed tem-
perature threshold is reached to warn the operator. There
have been at least 5 mixing valve faults that resulted in a
PS trip. One example is illustrated in Fig. 1(a). Henceforth,
we will focus on the transistor temperature only and we will
refer to it as the “power supply temperature”.

The detection of the temperature gradient in sectors
19 and 20 in Fig. 1(a) is analogous to the detection of objects
in photographs. Hence, we employed the spectral residual
saliency detection method [1, 6]. The map of the saliency
score (from 0 to 1) is shown in Fig. 1(b). The object map
(anomaly map), presented in Fig. 1(c), successfully spot-
lights the stuck-mixing-valve event. Depending on the pa-
rameters, the advance warning can be issued up to 30 minutes
before the trip. In real time, the saliency detection can be
applied to a sliding-window temperature map. The optimal
window length was about 3 hours. The vertical size of the
temperature map was 680, the number of considered PSs.
The method is sensitive to the temperature map resolution,
false positives may occur. We are working on using the
saliency maps as input for a convolutional neural network
for further classification of the detected anomaly candidates.
This may reduce the number of false positives [7].

Now, let us consider anomaly detection with an
autoencoder—a neural network with equal dimensions of in-

Figure 2: Example of an autoencoder [8].

put and output layers. It contains one or more hidden layers,
and there is always a bottleneck layer in the middle, with
a lower size than input and output layers, see Fig. 2. Au-
toencoders learn a compressed representation of the training
data by minimizing the difference between the input and the
output. An autoencoder can be used for anomaly detection
in the following way. First, it is trained on the reference
data, so that it can learn various patterns, typical for the
reference data only. Then, when it encounters an anoma-
lous data sample, it is unlikely to reconstruct it well. Hence,
the reconstruction error constitutes an anomaly score. The
threshold can be chosen based on the reconstruction error in
the training data.

Figure 3 demonstrates how the reconstruction error of
an autoencoder for the PS temperatures increases in the
anomalous region leading to a trip. This is the same mixing-
valve incident, illustrated in Fig. 1. The first signs of the
anomaly are detected about an hour before the trip. The
inputs of this autoencoder are the PS temperatures, averaged
by sector (40 values). Only quadrupoles and sextupoles are
considered. The autoencoder layer sizes are the following,
40 → 10 → 5 → 10 → 40. Mean squared error (MSE) is
used as the loss function. Rectified Linear Units (ReLUs)
are used for activation. The autoencoder was trained on 10
reference data files preceding the trip file shown in Fig. 3.

Figure 3: (a) A temperature map (averaged by sector) for
the last 3 hours of a beamtime period before a trip. (b) The
reconstruction error of the autoencoder as a function of time.
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Figure 4: (a) PS temperature vs. time during Fill #11 of Run 2013-2, which ended with a glitch in this PS. (b) Reconstruction
error of the autoencoder vs. time. An anomaly is declared when the reconstruction error exceeds the chosen threshold.

One can also use several contiguous temperature values of
a single PS as input for an autoencoder. Figure 4 illustrates
that such autoencoder was able to detect unusual behavior
of a PS temperature, about 6 hours before it tripped. The
size of the sliding window was 20 points (about 20 minutes).
The architecture of the autoencoder was 20 → 10 → 5 →
10 → 20. Mean absolute error (MAE) was used as the
loss function. ReLU was used for activation. The anomaly
threshold for the reconstruction error was chosen as 1.5 times
the maximum reconstruction error in the training data. The
autoencoder was trained on 10 preceding reference data files.
Further, this autoencoder was tested on all available data
files for the PS of the considered magnet (S16B:S2). It
was always trained on 10 preceding reference files. This
magnet’s PS tripped only once, at the end of Fill #11 of
Run 2013-2. The autoencoder detected a precursor for this
trip (see Fig. 4) without producing any false positives in the
entire observation period from 2008 to 2022.

ANOMALIES IN PS CURRENT DATA
Inspired by the autoencoder performance in Fig. 4, we also

used this approach for the PS current noise monitor data. We
trained an individual autoencoder for each PS. Each autoen-
coder’s input size was 36, i.e., 6 process variables (MeanMin,
MeanMean, MeanMax, MADMin, MADMean, MADMax)
times 6 contiguous timesteps. For a more efficient use of
resources, all 1320 autoencoders could be joined into one
neural network [9] and trained on the GPU nodes of the
LCRC cluster at ANL. Three years of preceding reference
data files were used for training. The model can be re-trained
before the start of every APS run. The training takes about
an hour and a half. The detected anomalies are saved into a
single database, and the plots with the anomalous regions
can be quickly accessed in a special program.

The process variable, most relevant to anomaly detection,
is the maximum value of the MAD of current in a time win-
dow (MADMax). Simpler models can be considered using
this variable only. Overall, the models, based on the noise
monitor data, can detect precursors in up to 20 % of trips

from the historical records. There is also a sizeable number
of false positives. Still, the models are up to 500 times more
likely to declare an anomaly in the historical data leading to
a trip, than in the reference data.

DISCUSSION AND CONCLUSIONS
We have made progress in anomaly detection in the PS

current noise monitor data. At the moment, the false positive
rate is not insignificant, and it is not feasible to request a
response from the operator or from the PS maintenance team
after every declared anomaly, in real time. However, we
created an application, where an expert from the PS group
can review all detected anomaly candidates at the end of each
APS run, and decide whether any maintenance needs to be
performed during the shutdown. The model accuracy may
be improved by properly accounting for occasional PS swap-
outs, usage of correctors for photon beam steering, possible
dependence of PS current noise on current setpoints.

Anomalies in the PS temperature maps (see Figs. 1 and 3)
can be detected very effectively by the spectral residual
saliency detection method and by the neural network au-
toencoder. All 5 incidents with a stuck mixing valve would
have an advance warning of 30 minutes to an hour before
the trip. The number of false positives can be made very
low. It dependents on the parameters of the models, and on
their ability to generalize to other kinds of anomalies.

Autoencoders may be able to detect anomalies invisible to
less sophisticated algorithms. The temperature anomaly in
Fig. 4 was only detected due to its unusual behavior in time.
The value of the temperature was not higher than usual.
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