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Abstract
The Los Alamos National Laboratory electromagnetic

isotope separator (EMIS) utilizes a Freeman ion source to
generate beams of various elements which are accelerated to
40 keV and passed through a 75-degree bend using a large
dipole magnet with a radius of 1.2 m. The isotope mass
differences translate directly to a spread in momentum, Δ𝑝,
relative to the design momentum 𝑝0. Momentum spread is
converted to spread in the horizontal arrival location Δ𝑥 at a
target chamber by the dispersion of the dipole magnet Δ𝑥 =

𝐷 (𝑠)Δ𝑝/𝑝0. By placing a thin slit leading to a collection
chamber at a location 𝑥c specific isotope mass is isolated
by adjusting the dipole magnet strength or the beam energy.
The arriving beam current at 𝑥c is associated with average
isotope atomic mass, giving an isotope mass spectrum I(m)
measured in mA. Although the EMIS is a compact system
(5 m) setting up and automatically running at an optimal
isotope separation profile I(m) profile is challenging due to
time-variation of the complex source as well as un-modeled
disturbances. We present preliminary results of developing
adaptive machine learning-based tools for the EMIS beam
and for the accelerator components.

INTRODUCTION
The Los Alamos National Laboratory electromagnetic

isotope separator (EMIS) utilizes a Freeman ion source to
generate beams of various elements [1, 2], which are then
accelerated to ∼40 keV and passed through a 75-degree
bend using a large dipole magnet with a radius of 1.2 m
[3]. Because the isotopes are accelerated to a common ki-
netic energy their mass differences translate directly to a
spread in momentum, Δ𝑝, relative to the design momentum
𝑝0. Momentum spread is then converted to a change in the
horizontal arrival location Δ𝑥 at a target chamber through
the dispersion of the dipole magnet: Δ𝑥 = 𝐷 (𝑠)Δ𝑝/𝑝0.

By placing a thin slit leading to a collection chamber at
a location 𝑥 = 𝑥c it is possible to isolate specific isotope
mass by sweeping the dipole magnet strength or the beam
energy. The arriving beam current at 𝑥c can be associated
with average isotope atomic mass, resulting in an isotope
mass spectrum I(m) measured in mA, as shown in Fig. 1 for
a well-tuned EMIS with good isotope separation. Although
the EMIS is a compact system ( 5 m) setting up and running
at an optimal configuration at which the cleanest isotope
separation is achieved with a desired I(m) profile can be
challenge due to time-variation of the complex source as
well as un-modeled disturbances. In this work we present
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Figure 1: A typical Krypton spectrum is shown for a well
tuned EMIS setup with sharp peaks between isotopes.

Figure 2: Data points collected for initial ML studies.

preliminary results of developing machine learning-based
tools for the EMIS beam and for the accelerator components.

Initial data collection was carried out by adjusting the
source voltage, the current of the source filament, and the
current of a source magnet. For each setting the dipole
magnet strength was swept over a wide range in order to
record a full isotope spectrum I(m). Figure 2 shows the
data points which were collected during preliminary studies,
with different colors corresponding to different collection
days and different shades corresponding to the peak collector
current at AMU 84.

ML MODELS
We first demonstrated a neural network (NN) design which

acts as a surrogate model, 𝐹 (c), mapping the set of con-
trolled or measured EMIS parameters c = (𝑐1, 𝑐2, 𝑐3), which
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Figure 3: Top: Examples of generated spectra I(m) based on the trained NN. Bottom: Inverse function approximating NN
for mapping a measured spectrum I(m) back to the three source parameters.

were the source current, voltage and source magnet current,
to an estimate of the mass spectrum

𝐹 : c → Î(m), (1)

by utilizing a supervised learning approach which minimized
a cost based on the 𝐿2 difference between the predicted and
measured spectra:

𝐶 =

∫ ��I(m) − Î(m)
��2 𝑑𝑚. (2)

Examples of the close match between predicted and mea-
sured spectra are shown in Fig. 3.

A second approach was to utilize a neural network as an in-
verse model 𝐹−1 (I(m)) which enables the use of a measured
spectrum I(m) as a diagnostic of various EMIS parameters
via the inverse map

𝐹−1 : I(m) → ĉ, (3)

where the cost being minimized was now the mean squared
error between predicted and set EMIS parameters:

𝐶 =
1
3

3∑︁
𝑖=1

(𝑐𝑖 − 𝑐𝑖)2 . (4)

The accuracy of the inverse mapping is shown in Fig. 3.

APPLICATIONS
The forward model can be used for EMIS optimization

by quickly scanning over a large parameter space to map

parameter settings to an optimal mass spectrum I(m) with
the cleanest isotope separation.

The inverse map has the potential to track time-varying pa-
rameter values c(t) by continuously mapping a time varying
spectrum 𝐹−1 : I(m,t) → ĉ(t).

We these NN models can be used together with adaptive
feedback control algorithms to develop adaptive machine
learning (AML) tools that are robust to the time-varying
nature of the EMIS source to serve as adaptive controls and
adaptive virtual diagnostics for the EMIS system.

For adaptive tuning we utilize a recently developed form
of adaptive feedback control which is designed for the stabi-
lization and optimization of analytically unknown nonlinear
time-varying systems of the form

¤x = f (x, c, 𝑡), (5)
𝐶 (x, c, 𝑡) = 𝑦(x, c, 𝑡) + 𝑛(𝑡), (6)

where x(𝑡) are physical parameters of interest such as, for
example, the I(m) spectrum and the c are controlled parame-
ters, 𝑦(x, c, 𝑡) is a measurable analytically unknown output
function such as the maximum value of the 84 AMU peak of
I(m), and 𝑛(𝑡) is random noise [4, 5]. This adaptive tuning
method has been utilized for complex time-varying problems
such as the real-time control of the (𝑧, 𝐸) longitudinal phase
space of intense electron beams in the LCLS free electron
laser at SLAC National Accelerator Laboratory [6].

The ES algorithm tunes parameters according to

𝑑𝑐𝑖

𝑑𝑡
=
√
𝛼𝜔𝑖 cos(𝜔𝑖𝑡 + 𝑘𝐶), (7)
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Figure 4: Adaptive tuning of input parameters for maximization of I(m) peak current showing evolution of normalized
𝑉, 𝐴, 𝑀 parameter values, evolution of the I(m) spectrum, and the initial and final spectra.

where 𝛼 and 𝜔i control the size of the dithering amplitudes,
𝑘 is a feedback gain, and the 𝜔i are distinct dithering fre-
quencies. Note that 𝐶 is a noise-corrupted measurement of
the analytically unknown function 𝑦. For large 𝜔i, using
controller, Eq. (7) results in average parameter dynamics

𝑑c̄
𝑑𝑡

= − 𝑘𝛼

2
∇c̄𝐶. (8)

Here we define our cost function as 𝐶 = maxm {I(m)},
and take the following approach.
Step 1: Utilize a quick parameter scan, as shown in Fig. 2
to learn a neural network-based mapping 𝐹 : c → Î(m).
Step 2: Perform an extremely fast (ms per iteration by utiliz-
ing the NN) constrained digital iterative optimization based
on a finite difference approximation of Eq. (7) of the form

𝑐𝑖 (𝑛 + 1) = 𝑐𝑖 (𝑛) + Δ𝑡

√
𝛼𝜔𝑖 cos(𝜔𝑖𝑛Δ𝑡 + 𝑘𝐶 (𝑛)),

𝐼 (𝑚, 𝑛 + 1) = 𝐹 (c(𝑛 + 1)),
𝐶 (𝑛 + 1) = max

m

{
𝐼 (𝑚, 𝑛 + 1)

}
.

We demonstrate such an approach by starting with bad
settings for 𝑉, 𝐴, 𝑀, which results in the poorly separated
spectrum shown at step 0 in Fig. 4. The source parameters
𝑉, 𝐴, 𝑀 are then adaptively tuned within constraints of the
span of the training data that was collected as shown in
Fig. 2 in order to automatically maximize the cost function
𝐶. The results of the tuning algorithm are shown in Fig. 4
with convergence to the maximum within ∼40 steps and a
3D view of the path the parameters take during optimization
is shown in Fig. 5.

CONCLUSIONS
We have demonstrated preliminary results on the benefit

of simple adaptive ML for automatic optimization and tuning
of an electromagnetic isotope separator. Our next steps
are to update the digital data acquisition system of the Los
Alamos EMIS in order to collect large data sets and develop
sophisticated AML-based controllers and diagnostics.
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Figure 5: Adaptive convergence (red) in 3D parameter space
relative to NN model training points (blue).
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