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Abstract
The dense drive beam used in plasma wakefield accelera-

tion generates a linear focusing force that causes electrons
inside the witness beam to undergo betatron oscillations, giv-
ing rise to betatron radiation. Because information about the
properties of the beam is encoded in the betatron radiation,
measurements of the radiation such as those recorded by the
UCLA-built Compton spectrometer can be used to recon-
struct beam parameters. Two possible methods of extracting
information about beam parameters from measurements of
radiation are machine learning (ML), which is increasingly
being implemented for different fields of beam diagnostics,
and a statistical technique known as maximum likelihood
estimation (MLE). We assess the ability of both machine
learning and MLE methods to accurately extract beam pa-
rameters from measurements of betatron radiation.

INTRODUCTION
In plasma wakefield acceleration, a dense drive beam

generates a linear focusing force by repelling the plasma
electrons away from its path while leaving the much heavier
plasma ions uniformly distributed. Subject to this focus-
ing force, electrons inside the witness beam then undergo
harmonic transverse betatron oscillations that give rise to
betatron radiation. Because information about the beam is
encoded in betatron radiation, measurements of the radia-
tion can be used to reconstruct beam parameters, allowing
devices which record information about betatron radiation,
such as the UCLA-built Compton spectrometer, to be used
for beam diagnostics. Machine learning (ML) has the poten-
tial to be applied to betatron radiation diagnostics, as ML
methods are already implemented for some fields of beam di-
agnotics [1]. For example, the application of convolutional
neural networks at FAST is able to produce a prediction
for various downstream beam parameters from simulated
datasets [2]. Another method of extracting information about
beam parameters from measurements of radiation is max-
imum likelihood estimation (MLE), a statistical technique
used to determine unknown parameters from a given distri-
bution of observed data. The goal of this work is to assess
the ability of both maximum likelihood estimation and ma-
chine learning as methods for accurately extracting a beam
parameters from measurements of betatron radiation [3–5].
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Figure 1: Examples of simulation-produced radiation spec-
tra for spot sizes from 1-4 µm.

BEAM PARAMETER RECONSTRUCTION
USING MLE

The method of maximum likelihood estimation involves a
probability distribution function 𝑓 (𝑥 |𝜎), which specifies the
probability of observing a data vector 𝑥 given the parameter
𝜎 and is related to a likelihood function 𝐿 (𝜎 |𝑥) by 𝐿 (𝜎 |𝑥) =
𝑓 (𝑥 |𝜎). Given a set of N observations of data vectors, the
overall likelihood is the product of the likelihoods for each
individual data vector [6], and the value of the parameter 𝜎
which is most likely to have produced the set of observed data
is determined by maximizing the likelihood with respect to
𝜎. To avoid possible problems with arithmetic underflow [7],
log-likelihood was used instead of raw likelihood. The log-
likelihood is given by

ln 𝐿 (𝜎 |𝑥1, 𝑥2, ..., 𝑥𝑁 ) =
𝑁∑︁
𝑛=1

ln 𝐿 (𝜎 |𝑥𝑛), (1)

where the product of likelihoods has been converted into a
sum of log-likelihoods.

The first task tackled by this work was to correctly iden-
tify a beam’s spot size from its radiation spectrum using
MLE. Several simulations of betatron radiation from beam
particles in a plasma wakefield accelerator were run for
beams of different spot sizes, using a simulation in which
particles are sampled from a beam and tracked through ide-
alized fields and betatron radiation was computed using
Liénard–Wiechert potentials [8, 9]. The betatron radiation
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Figure 2: The log-likelihood function 𝑙𝑛𝐿 (𝜎 |𝑥) reaches a
maximum at the test spot size, 2 µm.

spectra from these simulations, are shown in Fig. 1. Some
"test" spot size was then arbitrarily chosen, which in this
example was 2 µm, and an additional radiation spectrum
was obtained for this spot size. Each of the spectra were
then converted into a probability distribution, together form-
ing a probability distribution function 𝑓 (𝑥 |𝜎), where x is
photon energy and 𝜎 is spot size. The test spectrum was
also converted to a probability distribution 𝑓𝑡𝑒𝑠𝑡 (𝑥) for ease
of comparison. Now, the likelihood that 𝑓 (𝑥 |𝜎) models
𝑓𝑡𝑒𝑠𝑡 (𝑥) at different spot sizes for a test spectrum of discrete
photon energies 𝑥1, 𝑥2, ..., 𝑥𝑁 ,

ln 𝐿 (𝜎 |𝑥1, 𝑥2, ..., 𝑥𝑁 ) =
𝐽∑︁
𝑗=1

𝑓𝑡𝑒𝑠𝑡 (𝑥 𝑗 ) ln 𝑓 (𝑥 𝑗 |𝜎). (2)

Figure 2 shows the log-likelihood function plotted and cor-
rectly identifying the test spot size of 2 µm.

Furthermore, this same MLE algorithm can also be ex-
panded to analyze data for two-dimensional distributions,
such as the double differential spectrum distributions and
angular spectrum distributions shown in Fig. 3, with the
expression in Eq. (2) now summed over all points in the
2D distributions. When tested, the MLE algorithm was able
to correctly identify a test spot size of 1 µm using the 1D
spectrum and both 2D distributions. This makes the 1D
radiation spectrum a more attractive choice for use with the
MLE algorithm (as well with machine learning) because it
delivers similarly reliable results with less computation.

The MLE algorithm can also be expanded to identify
different beam parameters. The results present in Fig. 2 were
able to be replicated to identify beam energy, emittance, and
beam charge by repeating the above methods and replacing
spot size with the appropriate parameter.

To expand on the results in Fig. 2 and achieve more pre-
cise and accurate results with the same methods, 520 total
simulations were run, each with a spot size chosen randomly
between the values 0.1 and 9.0 µm. The 1D radiation spectra
of 310 simulations were inputted into the MLE algorithm to

Figure 3: Two types of two-dimensional distributions plotted
from same radiation data. Top: Double Differential Spec-
trum. Bottom: Angular Spectrum.

Figure 4: Overall spot size prediction results for 1D radiation
spectrum MLE with 310 sets of reference data and 120 test
cases.
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Figure 5: Spot size prediction results for 1D radiation spec-
trum ML with 400 sets of training data and 120 test cases
(MSE=0.2638).

predict the spot sizes of the other 210 spectra, and the pre-
diction results for the 210 test cases are displayed in Fig. 4.
At a mean-squared error (MSE) of 0.186 µm2, the prediction
results appear accurate, except in the region below 1 µm,
where a few predictions are significantly greater than the
actual spot sizes.

BEAM PARAMETER RECONSTRUCTION
USING MACHINE LEARNING

The MLE algorithm is limited in its prediction ability be-
cause it cannot predict parameter values not included in the
values for which simulation data is already provided. There-
fore, machine learning is also explored as another method
of extracting beam parameters from betatron radiation data.

Radiation data in the form of the 1D spectra was used to
train and test a densely connected neural network for pre-
dicting spot size. Simulations were run to generate 310
training data sets and 120 test cases data for different spot
sizes ranging from 0.1 to 9.0 µm. The neural network con-
tained one hidden layer, used ReLU activation functions,
and was trained over 200 epochs.

The results for ML predictions displayed in Fig. 5, show
a "tail" below ∼ 1 µm, where the predictions all tend to be
higher than the actual spot size values. The reason for the
persisting inaccuracy at low sizes may be related to the K
parameter values for the simulated small spot size beams.
These K values can be calculated by 𝐾 = 𝛾𝑘𝛽𝜎𝑟 , where 𝛾
is the Lorentz factor, 𝑘𝛽 is the wave number of the betatron
oscillations, and 𝜎𝑟 is the beam spot size. Fig. 6 shows
examples of radiation spectra and their associated K values
while Fig. 7 shows K values for different test cases and the
prediction error for each of those cases. The predictions are
very inaccurate in the region from K=0 to K=5, and accuracy
appears to decrease as K increases. It is likely that for K on
the order of 1, the spectrum of the beam becomes impossible
to distinguish from spectra of beams with higher spot sizes.

In addition to the ML model described above, another
model was trained to predict spot sizes from images of the
radiation spectra rather than from the spectrum data itself,

Figure 6: Examples of calculated K values for four different
radiation spectra.

Figure 7: Error in ML model predictions for different K
values of test data.

with similar levels of accuracy. Prediction of parameters
from images allows for wider application of these ML beam
diagnostics.

CONCLUSION
This work demonstrates that both MLE and ML can both

effectively use betatron radiation data in order to wield beta-
tron radiation as a tool for beam diagnostics, specifically in
order to identify beam spot size, emittance, charge, and en-
ergy. While spot size is the most thoroughly tested of these
parameters, both ML and MLE have difficulty accurately
identifying small beam spot sizes.
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