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Abstract
Particle accelerators are among the largest, most complex

devices. To meet the challenges of increasing energy, in-
tensity, accuracy, compactness, complexity and efficiency,
increasingly sophisticated computational tools are required
for their design and optimization. It is key that contempo-
rary software take advantage of the latest advances in com-
puter hardware and scientific software engineering practices,
delivering speed, reproducibility and feature composabil-
ity for the aforementioned challenges. A new open source
software stack is being developed at the heart of the Beam
pLasma Accelerator Simulation Toolkit (BLAST) by LBNL
and collaborators, providing new particle-in-cell modeling
codes capable of exploiting the power of GPUs on Exascale
supercomputers. Combined with advanced numerical tech-
niques, such as mesh-refinement, and intrinsic support for
machine learning, these codes are primed to provide ultrafast
to ultraprecise modeling for future accelerator design and
operations.

INTRODUCTION
Large-scale computer simulations of charged particle mo-

tion inside of particle accelerators play a crucial role in
accelerator design and operation. In order to quickly simu-
late charged particle dynamics, including collective effects,
advanced software must be developed to take advantage of
state-of-the-art computer hardware.

With the onset of the Exascale supercomputing era, om-
nipresent GPU-accelerated machines require multi-level par-
allelism, multi-paradigm programming and dynamic load
balancing. The U.S. Department of Energy Exascale Com-
puting project addressed this need by co-developing appli-
cations and software for Exascale computing acquisitions.
The laser-plasma modeling code WarpX [1], e.g., used in
plasma-based particle acceleration, is a result of this project
and recently provided the first full-scale runs at the first
demonstrated Exascale machine, Frontier [2].
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Beam, Plasma & Accelerator Simulation Toolkit
WarpX is a code in the Beam, Plasma & Accelerator Simu-

lation Toolkit (BLAST, https://blast.lbl.gov), a suite
of open source particle accelerator modeling codes. Origi-
nally developed under the name Berkeley Lab Accelerator
Simulation Toolkit, included codes achieved compatibility
through a common meta-data standard in I/O, openPMD [3],
yet were implemented in disjoint code bases. BLAST has
been renamed in 2021 to reflect international contributions
from LIDYL (CEA, France), SLAC (USA), LLNL (USA),
DESY (Germany), UHH (Germany), HZDR (Germany),
Radiasoft (USA), CERN (Switzerland) and more; BLAST
development involves deep collaboration among physicists,
applied mathematicians, and computer scientists.

With the emergence of the first Exascale Computing su-
percomputers, modeling codes that were originally designed
for parallel CPU-powered machines need to undergo a fun-
damental modernization effort. This became necessary, as
compute nodes are now equipped with accelerator hardware
such as GPUs (and potentially FPGAs in the future). Se-
lected as application for the Department of Energy Exascale
Computing Project, the BLAST code WARP [4,5] underwent a
complete rewrite from Fortran to modern C++ resulting in its
successor WarpX [1]. Building on the momentum of this tran-
sition to form a more cohesive Accelerator Toolkit, the spe-
cialized plasma wakefield acceleration code HiPACE++ [6]
and beam dynamics code ImpactX [7], presented herein,
are developed.

Software Design
A central goal of the modernization of BLAST is modular-

ity for efficient code reuse and tight integration for coupling,
i.e., in hybrid particle accelerators with conventional and
advanced (plasma) elements. Figure 1 shows the design
of BLAST’s software dependencies, with upper components
depending and sharing lower blocks in the schema. Shared
code, common application programming interfaces (APIs)
and data standards ensure composability and connection
to the AI/ML and data science ecosystems. Performance-
critical routines are implemented and reused in modern C++,
using a single-source approach to program both CPUs and
GPUs via a performance-portability layer in AMReX [8]. The
newly introduced ABLASTR library collects common particle-
in-cell (PIC) routines.

Python high-level interfaces are used for user efficiency
and to provide standardized APIs to data science and AI/ML
frameworks, which are mostly driven from the same lan-
guage. Documentation and examples are developed in
lock-step with documentation and published on https:
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Figure 1: Design of the BLAST software stack. Modularization
enables code sharing and tight coupling.

//impactx.readthedocs.io. Examples and test cases
are continuously run against expected results.

All development is carried out in the open using open
source licenses, contributable code repositories, code re-
views, regular releases and change logs [7]. The community
reports open “issues” for feature requests, bug reports, etc.
Installation for users and developers is supported by package
managers and HPC modules.

IMPACTX
ImpactX is an 𝑠-based beam dynamics code. Leveraging

expertise and models in IMPACT-Z [9] and MaryLie [10,
11], this new simulation code is built from the ground up
to take GPU-accelerated computing, mesh-refinement for
space-charge effects, load balancing, and coupling AI/ML
frameworks into consideration. ImpactX design relies on
open community standards for I/O and data interfaces.

As of version 22.08, many features are still under active
development. Generalized and reused from WarpX via the
ABLASTR library are GPU-accelerated routines for charge
deposition, beam statistics, Poisson solve, profiling, warn-
ing logging, Unix signal handling, build/installation logic,
among others.

Model Assumptions
Tracking through lattice elements is performed by pushing

particles in 𝑠 using a symplectic map. Currently, each map
applied during tracking is accurate through linear order (with
respect to the reference orbit). The linearization implies
that, when solving for space-charge effects, we assume that
the relative spread of velocities of particles in the beam is
negligible compared to the velocity of the reference particle.

The space charge fields are treated as electrostatic in the
bunch rest frame. In particular, no retardation or radiation
effects are included, and we solve the Poisson equation in
the bunch rest frame. The effect of space charge is included
in tracking using a map-based split-operator approach [9].

Usage Example
ImpactX can be executed in two ways: a traditional ex-

ecutable reading a textual input file or driven from Python.
The latter approach is compact and expressive for simulation
design, since Python’s well-known syntax can be used to
design complex beamlines with lines and segments. From

1 from impactx import ImpactX, RefPart, \
2 distribution, elements
3

4 sim = ImpactX() # simulation object
5

6 # set numerical parameters and IO control
7 sim.set_particle_shape(2) # B-spline order
8 sim.set_slice_step_diagnostics(True)
9 sim.set_space_charge(False)

10

11 # domain decomposition & space charge mesh
12 sim.init_grids()
13

14 # load a 2 GeV electron beam with an initial
15 # unnormalized rms emittance of 2 nm
16 energy_MeV = 2.0e3 # reference energy
17 charge_C = 1.0e-9 # used with space charge
18 mass_MeV = 0.510998950 # mass
19 qm_qeeV = -1.0e-6/mass_MeV # charge/mass
20 npart = 10000 # number of macro particles
21

22 distr = distribution.Waterbag(
23 sigmaX = 3.9984884770e-5,
24 sigmaY = 3.9984884770e-5,
25 sigmaT = 1.0e-3,
26 sigmaPx = 2.6623538760e-5,
27 sigmaPy = 2.6623538760e-5,
28 sigmaPt = 2.0e-3,
29 muxpx = -0.846574929020762,
30 muypy = 0.846574929020762,
31 mutpt = 0.0)
32 sim.add_particles(
33 qm_qeeV, charge_C, distr, npart)
34

35 # set the energy in the reference particle
36 sim.particle_container().ref_particle() \
37 .set_energy_MeV(energy_MeV, mass_MeV)
38

39 # design the accelerator lattice
40 ns = 25 # steps slicing through ds
41 fodo = [
42 elements.Drift(ds=0.25, nslice=ns),
43 elements.Quad(ds=1.0, k=1.0, nslice=ns),
44 elements.Drift(ds=0.5, nslice=ns),
45 elements.Quad(ds=1.0, k=-1.0, nslice=ns),
46 elements.Drift(ds=0.25, nslice=ns)
47 ]
48 # assign a fodo segment
49 sim.lattice.extend(fodo)
50

51 # run simulation
52 sim.evolve()

Listing 1: An example Python script FODO.py that can be
used to design an FODO cell setup with ImpactX v22.08.
This script can equally drive CPU and GPU simulations and
executes over multiple nodes if started with MPI.
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a performance viewpoint, both are equivalent since com-
putational C++ kernels are compiled and just wrapped from 
Python. Listing 1 shows such a script-driven simulation.

Furthermore, such scripts can be extended since ImpactX 
exposes the underlying AMReX data structures to Python via 
pyAMReX, implementing AMReX data storage for zero-copy 
access via a standardized Array Interface [12]. For instance, 
beam particles and generated fields can be manipulated and 
analyzed in memory, combined with solvers from other 
BLAST or third party software packages and additional com-
putational routines can be added, even with GPU support, 
using packages such as cupy or numba.

NUMERICAL EXPERIMENTS
Correctness tests are performed continuously, for every 

code change, on ImpactX. The goal of these tests is to cover 
all implemented functionality and verify that computed re-
sults are within expected precision, independently of the 
compute hardware used. Following such test-driven develop-
ment eases the entry burden for accelerator scientists adding 
new functionality to the project, since automated testing 
will inform them if unexpected side-effects of changed code 
would change benchmarked physics results. Tests and exam-
ples also add a solid body of documented examples to the 
project.

As of version 22.08, the following benchmarks and ex-
amples are implemented: a FODO cell, a magnetic bunch 
compression chicane [13], a stationary beam in a constant 
focusing channel, a Kurth-distribution beam in a periodic 
isotropic focusing channel [14], a stable FODO cell with 
short RF (buncher) cavities added for longitudinal focus-
ing [15], a chain of thin multipoles, a nonlinear focusing 
channel based on the IOTA nonlinear lens, and a model of 
the Fermilab IOTA storage ring (linear optics) [16]. Detailed 
numerical parameters are archived online [7, 17].

Benchmark: FODO Cell
In this benchmark, a stable FODO lattice with a zero-

current phase advance of 67.8 degrees per cell is modeled. 
An rms-matched 2 GeV electron beam with initial unnor-
malized rms emittance of 2 nm propagates through a single 
cell, with the beam size evolution as shown in Fig. 2. In 
Fig. 3, the evolution of the transverse phase space is shown. 
The benchmark verifies for every code change that the beam 
second moments remain matched and that the emittances 
remain constant.
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Figure 2: Evolution of the horizontal and vertical rms beam
sizes in the FODO benchmark.
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Figure 3: Transverse phase space projections in the FODO
cell benchmark.

Benchmark: Berlin-Zeuthen Chicane
This benchmark is a simple, unshielded four-bend chicane

with parameters similar to the ones required for the com-
pression stages at LCLS (at 5 GeV) or TESLA XFEL (at
500 MeV) [13]. Here, a 5 GeV electron bunch with normal-
ized transverse rms emittance of 1 µm is used. Figure 4
shows the longitudinal beam size and transverse emittance
evolution. The former is compressed 10×, while the initial
emittance is recovered at the end of transport. The longitu-
dinal phase space evolution during the transport is shown in
Fig. 5.
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Figure 4: Evolution of longitudinal beam size (rms) and
transverse emittance in the chicane benchmark.
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Figure 5: Evolution of the longitudinal phase space in the
chicane benchmark, illustrating 10× compression.

Benchmark: Fermilab IOTA Storage Ring
This benchmark is a model of the bare (linear) lattice

of the Fermilab IOTA storage ring (v. 8.4) [16], with op-
tics configured for operation with a 2.5 MeV proton beam.
An rms-matched proton beam with an unnormalized emit-
tance of 4.5 µm propagates over a single turn. The second
moments of the particle distribution after a single turn are
checked to coincide with the initial second moments of the
particle distribution, to within the level expected due to nu-
merical particle noise.

In Fig. 6, the reference orbit indicating the global beam
position within the ring is shown. Figure 7 shows the rms
beam size evolution as a function of path length over a single
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turn. The thin dark lines are from ImpactX, while the light
bold lines in the background are from IMPACT-Z. The results
of the two codes are in excellent agreement.
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Figure 6: The reference orbit in the IOTA lattice benchmark,
as produced by ImpactX, showing the storage ring floorplan.
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Figure 7: Evolution of the rms beam size in the IOTA lattice
benchmark. Thin dark lines: ImpactX, light bold lines:
IMPACT-Z results.

Performance
Although ImpactX in version 22.08 is in an early de-

velopment state, initial performance comparisons can be
made between conventional (CPU) and accelerated com-
pute hardware (GPU). In the following, the above IOTA
lattice benchmark is used as a computing benchmark (with-
out I/O or space charge solvers) to measure the performance
of ImpactX on a node of the NERSC Perlmutter Phase 2 su-
percomputer. Prototypical for future large-scale simulations,
but not strictly needed for this benchmark to converge, 108

beam macro particles are used.
Figure 8 shows the ImpactX strong-scaling speedup in

time-to-solution relative to a 16 CPU core run (146 sec).
Compilation uses -O3 and fast-math enabled; compilers are
GNU 11.2.0 and NVCC 11.7.64, respectively. Values above
1.0 are faster, below are slower. Dynamic load-balancing is
not yet used.
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Figure 8: Relative performance between CPU and GPU
runs on Perlmutter Phase 2 (NERSC). 16 CPU cores (w/o
hyperthreading) and one A100 GPU are each 1/4th of a
node’s resources: one AMD EPYC 7763 (Milan) processor
and four NVIDIA Ampere A100 SXM2 (40 GB) GPUs.

Data Availability
Simulation code and documentation are openly developed

in Ref. [7]. Numerical experiments and performance results
are archived in Ref. [17].

CONCLUSION
This paper presents computational tools for the modeling

and design of particle accelerators, readying codes up for
next generation machines in the Exascale era. The open
source software toolkit BLAST provides modeling tools to
model hybrid accelerators, containing both plasma and con-
ventional beamline elements. ABLASTR is a modern C++17
library used to share particle-in-cell routines between simu-
lation codes. Based on this, ImpactX is developed to suc-
ceed IMPACT-Z as a new, 𝑠-based beam dynamics code with
intrinsic GPU, mesh-refinement and tight coupling to time-
based codes and AI/ML capabilities.

ImpactX is in an early state, but already able to model
significantly larger particle ensembles than its predecessor
codes. Ongoing and future developments will add capa-
bilities for: space charge effects, scalable I/O, non-linear
elements, RF-modeling, wakefield effects, surface methods
and support to read accelerator lattices from MAD-X files,
among others.
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