
AN OPEN-SOURCE BASED DATA MANAGEMENT AND PROCESSING
FRAMEWORK ON A CENTRAL SERVER FOR SCIENTIFIC

EXPERIMENTAL DATA∗

A. Liu†, W. Si, J. Callahan, S. Poddar, Euclid Techlabs, LLC, Bolingbrook, IL, USA
J. Gao, AJS Smartech, LLC, Naperville, IL, USA

Abstract
The ever-expanding size of accelerator operation and ex-

perimental data including those generated by electron mi-
croscopes and beamline facilities renders most proprietary
software inefficient at managing data. The Findability, Ac-
cessibility, Interoperability, and Reuse (FAIR) principles
of digital assets require a convenient platform for users to
share and manage data on. An open-source data frame-
work for storing raw data and metadata, hosting databases,
and providing a platform for data processing and visual-
ization is highly desirable. In this paper, we present an
open-source, infrastructure-independent data management
software framework, named by EuclidLIMS, to archive, reg-
ister, record, visualize and process experimental data. The
software was targeted initially for electron microscopes, but
can be widely applied to all scientific experimental data.

INTRODUCTION
Particle beam accelerators and beamlines are used in a

wide range of multidisciplinary research, including nuclear
physics, advanced material physics, high energy physics,
biophysics, and beyond. These facilities and instruments
generate large amounts of valuable scientific experimental
data, both for hardware diagnostics purposes and for sci-
entific discoveries. The types of data generated in these
experiments include images, text files, spreadsheets, propri-
etary file formats, and so forth. A lot of these data contain
rich metadata information, such as the instrumentation name,
model and settings, experimental conditions, purposes and
configurations, and more.

With the rapid development of detectors and pre-analysis
electronic systems, the volume and the speed of the data
generation are both growing significantly. Keeping up with
the explosive increase in scientific data creation has been
practically impossible for many existing data management
frameworks that are purely based on a local data and comput-
ing architecture, particularly for comparably smaller facili-
ties where the infrastructure is still not fully developed yet.
However, without a data management software, the scientific
data collected can be easily unintentionally lost no matter
whether it is stored on a portable storage disk, a personal or
organizational computer, or on a local data server. Finding
the data-of-interest from a sea of folders and files by filtering
with the filename is rather cumbersome. Moreover, physical

∗ Work supported by the U.S. DOE Office of Science under contract number
DE-SC0021512.

† a.liu@euclidtechlabs.com, ao@aoliu.tech

properties like aforementioned are prone to being lost, either
by being left behind or damages.

It is well accepted that a data management software can
mitigate the above problems with the proper usage of a well-
managed data server and a powerful software. Furthermore,
in order to deploy the software on computers with old operat-
ing systems (OS), which are prohibited to be connected to a
public network (WWW) and only support local network con-
nectivity. Therefore, the software not only needs to provide
all the necessary functionalities for the data management,
but also is required to be “miniature” such that it can be
adopted by most of the experimental computers.

Another desired capability of the software is providing an
online data analysis platform for the raw data collected. With
the fast advancement of cost-effective computing hardware,
many experimental facilities are now equipped with comput-
ing servers that are able to handle not only the data storage,
but also resource-demanding computing jobs. Therefore, it
is beneficial to be able to launch computationally heavy jobs
on the server so the managed data can be analyzed in the
background.

EUCLID-NEXUSLIMS
Euclid has been collaborating with a group at NIST to de-

velop a infrastructure, project and facility-independent soft-
ware framework for data management and processing. The
Euclid software framework is based on the NexusLIMS [1]
open-source program developed by the NIST collaborators,
and was initially named “Euclid-NexusLIMS”. LIMS stands
for “laboratory information management system”. During
the development of Euclid-NexusLIMS, we fully respected
the open-source software and FAIR principles. One of our
main goals was to accommodate a broader spectrum of sci-
entific data management requirements by taking advantage
of an already demonstrated framework instead of reinventing
the wheel.

The framework is made of several main components. The
ones that are present in both the original NexusLIMS and
our Euclid-NexusLIMS are a data logger graphical user in-
terface (GUI) that can be installed on control computers
that are used to control the instrumentation to take data, a
database record and metadata generator backend, and a fron-
tend with Web interface for browser-based user interaction.
A computing module in Euclid-NexusLIMS allows users to
run data analysis jobs with workload managers like Slurm
or Snakemake [2]. The infrastructure-specific portions have

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-TUYE3

09: Computing and Data Science for Accelerator Systems

TUYE3

307

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



been removed to be conveniently deployable at virtually all
facilities. We then added support for more data file formats,
such as TIFF and PCD files, such that more scientific data
can be supported in the preview generation.

The original NexusLIMS was designed such that the
whole framework does not depend on a public network
(WWW). The required network connections are: a local
area network (LAN) connection between the logger and the
backend, a LAN connection between the servers hosting the
backend and frontend, and a LAN connection between the
user computer and the server hosting the frontend service.
The backend and the frontend can also be hosted on the
same server, which does not require the LAN connection in
between. This design was made mainly due to the concern
that the NIST safety policy does not allow these servers to
be connected to the WWW.

The backend and frontend could both be hosted on a cloud
computing platform, such as the Google Cloud Platform
(GCP) and the Amazon Web Services (AWS), embracing
online cloud services. With the new framework, users can
directly save and back up data files to the cloud storage, pre-
process and postprocess data online, and view and download
data from anywhere that has Internet access.

To distinguish the two variations of Euclid-NexusLIMS,
the cloud-compatible version is named “EuclidLIMS”, ver-
sus the local-only version “Euclid-NexusLIMS-local”. In
Fig. 1, the workflow of Euclid-NexusLIMS-local and Eu-
clidLIMS are presented.

EUCLIDLIMS
EuclidLIMS, the cloud version, a user reserves an experi-

mental “session” for a certain machine in the facility on an
online calendaring system like a Google Calendar prior to
the experiment. The user then starts the session via using
the logger miniature GUI that is written with Python 3.4 and
modules compatible with the Python version. This allows
the logger to be installed and run on old OS such as Win-
dows XP, which was the oldest Windows OS EuclidLIMS
was tested with. Note that it is not necessary to use logger on
the computer that is controlling the data taking instruments,
as long as the computer that runs the logger can read and
write in the network file system (NFS) that the data files
are saved to. The network address of the logger computer
is used to identify itself in a predefined computer database,
such that the correct session information can be found in the
online calendering system.

The logger connects to the cloud’s MySQL database (as
used in our demonstration with the GCP) with Flask and
writes an entry to it with the session information, including
the datetime for the start and end of the session, experimenter
name, session notes, logger computer name, and so forth. It
also supports richer metadata with a more sophisticated cal-
endaring system, where information like department name,
project code, etc. can be recorded for the session.

The logger also handles the raw data file uploading from
the NFS to the cloud storage buckets. This requires the user

to be added to the GCP project that the buckets are associated
to and the user authenticates him/herself through a Google
Authentication browser page.

The backend deployed on the GCP watches for newly
added database entries and the associated data files uploaded
through the storage buckets. It is responsible for extracting
metadata information from the raw data files, such as the
camera configuration from a .zvd file generated by a Zivid
Two camera, and generating thumbnail(preview) images for
the frontend. This is enabled by deploying functions in
Google Functions, which is a function-as-a-service (FaaS)
provided by the GCP and allows for very high scalability.
The function watches over a cloud bucket and is triggered
by the creation of new files from users, and then runs and
saves the output files in a separate storage bucket.

The backend also generates a “record” for the frontend for
each experimental session. The record contains information
that will be rendered for users who need to query the record
database with keywords like the datetime, name, etc. Storage
bucket information is also present in the record such that
the frontend can find the locations of the data files for user
downloads. The tasks of record generation and posting to the
frontend via HTTP are enabled with the Google App Engine,
in which a cron job-like periodic task execution is allowed.
The backend regularly checks the records and identify the
new ones that need to be processed and handles the tasks
itself without intervention.

The frontend is a Web-based data visualization and opera-
tion tool designed to work with the records generated by the
backend. The original codes were developed by NIST [3],
and then adopted by our NIST collaborators for NexusLIMS,
which was referred to as NexusLIMS-CDCS. It is container-
ized and can be deployed using docker and docker-compose
either on the same server where the backend is running, or
a dedicated separate Web server. It is set to always restart
with the system when after it crashes. It is developed on
top of the Django framework and provides extensive REST
APIs. It renders the records uploaded by the backend in
XML formats based on a pre-defined schema. We made
some modifications to NexusLIMS-CDCS to deploy it in a
virtual machine (VM) provided by the compute engine of the
GCP, and refer to it as EuclidLIMS-CDCS for clarity. Two
major views displayed to the user by EuclidLIMS-CDCS
are shown in Fig. 2, where (a) is the overview of all records
matching the query criteria and (b) shows the individual
record for a single experimental session.

The computing module in EuclidLIMS, with a goal of sup-
porting both exploratory and interactive and intensive and
batched data processing. Both of them are done on the cloud.
For exploratory data analysis, users are allowed to launch
interactive sessions in JupyterHub to do “live scripting” with
the data already in the storage buckets. The JupyterHub is
deployed on the GCP using the Google Kubernetes Engine
(GKE), which allows automatic scaling. Each GKE pod
(a user computing environment) is spawned from the same
docker image. Users can log in with Google credentials and
perform notebook-based data analysis with Python, R, C++,

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-TUYE3

TUYE3C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

308 09: Computing and Data Science for Accelerator Systems



Figure 1: Scientific data management workflow with our two software variations: Euclid-NexusLIMS (local version) and
EuclidLIMS (cloud version).

Figure 2: Two major views displayed to the user by
EuclidLIMS-CDCS. (a): overview of all records matching
the query criteria; (b): an individual record for a single ex-
perimental session.

Julia, etc. Since the raw data is contained in the buckets on
the GCP, the data transfer is straight-forward and fast within
the same Google platform.

For batch computing jobs and workflow management,
we temporarily adopted an open-source workflow manage-
ment tool, snakemake, which follows the same philosophy
as make which provides more flexibility using python-like
syntax. With proper configuration of job descriptions and
scripts, users can launch batch processing jobs with a sin-
gle command in the terminal. Jobs are sent over to the
auto-provisioned virtual machines on the cloud. Upon the
completion of jobs, the provisioned virtual machines are
automatically shut down to save cost. The cloud platform
generally offers a wide range of configurations of comput-

Figure 3: Block diagrams showing the EuclidLIMS frame-
work.

ing resources, users can configure their jobs depending on
the concrete tasks to minimize the runtime without actually
paying the actual price of the hardware. This is a reflection
of the in-demand billing model of the cloud platform and
one of the biggest advantages of EuclidLIMS.

The structure of the EuclidLIMS framework is shown in
Fig. 3 with block diagrams.

CONCLUSION
A software framework EuclidLIMS for scientific data

management and processing on cloud computing platforms
has been created and demonstrated. The framework has
components that are designed to allow for convenience in
the framework deployment, user usage, and increased scala-
bility.

ACKNOWLEDGEMENTS
The author would like to thank the whole project group at
Euclid, especially Weinan Si for his invaluable contribu-
tions to the code development. The authors also thanks the
NIST collaborators June Lau and Josh Taillon for sharing
their knowledge and codes, and our Northwestern customers
Roberto Reis and Laura Bartolo.

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-TUYE3

09: Computing and Data Science for Accelerator Systems

TUYE3

309

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



REFERENCES
[1] J. Taillon et al., “NexusLIMS: Leveraging Shared Microscopy

Resources for Data Analysis with a Configurable Laboratory 
Information Management System,” Microscopy and Micro-
analysis, vol. 26, no. 52, 2020.
doi:10.1017/S1431927620023314

[2] https://snakemake.readthedocs.io/en/stable/
index.html

[3] https://www.nist.gov/itl/ssd/information-
systems-group/configurable-data-curation-
system-cdcs/about-cdcs

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-TUYE3

TUYE3C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

310 09: Computing and Data Science for Accelerator Systems


