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Abstract
We explore the possibility of using a Machine Learning

(ML) algorithm to identify the source of occasional poor
performance of the Particle Accumulator Ring (PAR) and
the Linac-To-PAR (LTP) transport line, which are parts of
the injector complex of the Advanced Photon Source (APS)
at Argonne National Lab. The cause of reduced injection or
extraction efficiencies may be as simple as one parameter
being out of range. Still, it may take an expert considerable
time to notice it, whereas a well-trained ML model can point
at it instantly. In addition, a machine expert might not be im-
mediately available when a problem occurs. Therefore, we
began by focusing on such single-parameter anomalies. The
training data were generated by creating controlled pertur-
bations of several parameters of PAR and LTP one-by-one,
while continuously logging all available process variables.
Then, several ML classifiers were trained to recognize cer-
tain signatures in the logged data and link them to the sources
of poor machine performance. Possible applications of au-
toencoders and variational autoencoders for unsupervised
anomaly detection and for anomaly clustering were consid-
ered as well.

INTRODUCTION
This contribution investigates the possibility to use unsu-

pervised and supervised Machine Learning (ML) methods
for anomaly detection and classification in the Particle Accu-
mulator Ring (PAR) and in the Linac-To-PAR (LTP) trans-
port line in the injector complex of the Advanced Photon
Source (APS) [1, 2] at Argonne National Lab. We create
intentional perturbations in PAR and LTP, which result in
poor injection and extraction efficiencies. Then, these data
are used for training and testing of various ML models. We
chose PAR and LTP for these studies, because a considerable
dedicated study time is available in these parts of the APS
complex without interruption of user operations.

DATA ACQUISITION
The data presented in this paper were collected during

three studies in November, 2021 and during one study on
January 30, 2022. Figure 1 illustrates the intentional pertur-
bations of several Process Variables (PVs) on January 30,
2022 and their effect on the charge extracted from PAR. Dur-
ing our studies, the injection cycle rate was 2 Hz. Therefore,
the machine state was also logged at 2 Hz as well. Overall,
we logged about 9000 PVs related to PAR, LTP, and the
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Figure 1: Intentional perturbations of some process vari-
ables in PAR and LTP and their effect on the extracted charge.
Also, prediction performance of a neural network classifier
(bottom panel).

linac. However, later we decided to only use up to 155 most
relevant PVs as input for ML models. During the intentional
perturbations, the beam charge was always kept above zero
in order to use the signals from the Beam Position Monitors
(BPMs) and to keep various control laws active. Although,
most of the data for this paper were collected manually, the
process, illustrated in Fig. 1, can be fully automated. We
developed a script and tested it with several PVs.

SUPERVISED ML
The machine state snapshots collected at 2 Hz during the

intentional perturbations, as in Fig. 1, constitute a labeled
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data set. Each poor-performance state can be labeled by the
name of the PV that is perturbed at the time. Such data set
can be used to train a neural network classifier. The follow-
ing PVs were included in the input of the neural network:
PAR BPM signals and corrector currents, LTP BPM sig-
nals and corrector currents, charge in PAR at 10 different
timesteps within each injection cycle, charge in LTP and in
PTB (PAR-To-Booster), injection and extraction efficiencies,
linac trigger timing, PAR kicker timings. The total number
of input PVs was 155. The intentionally perturbed PVs (see
Fig. 1) were not included in the model input, as it would
make the training process trivial. Instead, the goal of this
study was to test whether a neural network could learn to
recognize and classify certain signatures in the state of the
machine, without direct access to the root cause of poor
performance. The possible signatures include the reduced
charges in different parts of the machine, changed BPM sig-
nals, changed charge vs. time within one injection cycle,
changed corrector strengths (due to the orbit control law in
PAR and due to the trajectory control law in LTP).

The chosen architecture of the neural network was the
following (layer sizes): 155 → 80 → Dropout → 80 →
Dropout → 40 → 7. Rectified Linear Units (ReLU) were
used for activation (except for the last layer, where a SoftMax
activation function was used). The Dropout layers’ rates
were 0.5 [3, 4]. This neural network returns a vector of
probabilities for the causes of poor machine performance—
six probabilities for the perturbed PVs and one probability,
reserved for the baseline state. The Dropout layers were used
to avoid overfitting.

One can train the neural network classifier on the data
from the beginning of one study, and test it on the data from
the end of the same study (a few hours apart). In this case,
the prediction accuracy on the test data was above 99 % for
each of our study shifts. However, it was important to verify
that the model would generalize well on new data, several
weeks or months away from the training data, because there
are long-term drifts in the machine. The bottom panel of
Fig. 1 illustrates the prediction accuracy of the neural net-
work classifier on the data collected on January 30, 2022,
while the neural network classifier was trained on the data
from November, 2021. Because the classifier returns 7 prob-
abilities for causes of poor performance, on practice, the
machine operator can rank them in descending order, and if
the best prediction (green) is incorrect, they can check the
second-best (yellow), third-best (brown), etc.

To remove outliers in the training data we used Isolation
Forest [5]. Before training, the data were scaled by a Robust
Scaler [5]. The loss function (cross entropy) was weighted
according to the sizes of anomaly classes, because the train-
ing data were unbalanced. This is especially important for
the baseline class, which is much bigger than others.

UNSUPERVISED ML
One disadvantage of supervised ML is that it requires

labeled anomaly data, which is usually scarce. This is why

in the previous section we used intentional perturbations to
generate it. In this section, we consider an unsupervised
ML model, namely, an autoencoder, which can be trained on
abundant normal-operation (baseline) data. An autoencoder
is a neural network with equal dimensions of input and output
layers. It contains one or more hidden layers, and there
is always a bottleneck layer in the middle, with a lower
size than input and output layers, see Fig. 2. Autoencoders

Figure 2: Chosen autoencoder architecture [6].

learn a compressed representation of the training data by
minimizing the difference between the input and the output.
There are various kinds of loss functions, we will use the
Mean Squared Error (MSE). An autoencoder is used for
anomaly detection in the following way. First, it is trained
on the baseline data, so that it can learn various patterns,
typical for the baseline data only. Then, when it encounters
an anomalous data sample, it is unlikely to reconstruct it well.
Hence, the reconstruction error constitutes an anomaly score.
The threshold can be chosen based on the reconstruction
error in the training data.

In this section, we consider perturbations in the PAR
dipoles and quadrupoles only. We use the horizontal BPM
signals and the horizontal corrector currents in PAR (24
PVs) as the autoencoder input. The perturbed PVs are not
included in the autoencoder input. The chosen architecture
of the autoencoder is presented in Fig. 2. ReLU was used
as the activation function for the hidden layers. The autoen-
coder’s ability to detect anomalies was tested on the data
with intentional perturbations from one of our study shifts,
see Fig. 3. The autoencoder was trained on the baseline data
from a 7-day long interval preceding the test data.

Another possible application of autoencoders is anomaly
clustering. Indeed, an autoencoder produces a representa-
tion of the data in the latent space of smaller dimensional-
ity, where it may be easier to divide the data into distinct
groups. This may be useful for preliminary analysis of poor-
performance data, namely, to determine if there is a single
problem source, or multiple problems happening at different
moments in time. To test this idea, 7 days of baseline data
were supplemented by one of our study shifts with inten-
tional perturbations. Then, an autoencoder was trained on
the combined data set. A 3-dimensional latent space was
chosen. The obtained distribution of the training data in the
latent space is shown in Fig. 4(a), which demonstrates that a
regular autoencoder does not always learn the optimal data
representation. The distribution can be sparse and hard to
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Figure 3: Anomaly detection performance of an autoencoder, which was trained on the normal-operation data from the
week, preceding the presented test data. (a) Charge extracted from PAR as a function of time during intentional perturbations
(color-coded). (b) Reconstruction error of the autoencoder as a function of time. The anomaly threshold (black dashed
horizontal line) was chosen as the 99.9 percentile for the reconstruction error in the baseline data used for training. The red
shaded areas represent the detected anomalies, where the reconstruction error exceeds the selected threshold.

Figure 4: The distribution of the training data in a 3D latent
space for (a) an ordinary autoencoder and (b) a 𝛽-variational
autoencoder.

interpret. An autoencoder may place two “similar” points
far apart in the latent space if it minimizes the reconstruc-
tion error, because there are no additional constraints on
the distribution. Hence, a variational [7] or a 𝛽-variational
[8] autoencoder may be a better choice, see Fig. 4(b). Vari-
ational autoencoders have probabilistic encoders and de-
coders, which makes the clusters more continuous. Also,
they use a zero-mean, unit-variance Gaussian prior for the
distribution in the latent space, which constrains it to the de-
sired region. A 𝛽-variational autoencoder uses a parameter
𝛽 > 1 in the loss function to prioritize the resemblance to the
Gaussian prior over the reconstruction precision in order to
encourage a disentangled representation [8]. In Fig. 4(b), the
baseline cluster is located in the center. Intentional perturba-
tions of each PV are represented by a cluster pair—positive
and negative deviations from the baseline value.

DISCUSSION AND CONCLUSIONS
The neural network classifier for the considered anomalies

in PAR and LTP is rather accurate and its performance does
not degrade significantly with time on a scale of a couple

months, see Fig. 1. Even though this was a proof-of-principle
experiment, the obtained classifier may be useful in real life,
if the current meter for one of the considered magnets (see
Fig. 1) becomes faulty and stops reflecting the real magnetic
field. In this case, the classifier would point at that magnet
as the source of the problem, because the model’s decision is
based on the signatures created in the BPMs, correctors, etc.
One drawback of supervised ML models is that they require
labeled data for training. However, it may be possible to
develop a script for autonomous collection of the data with
intentional perturbations. It can be run after every significant
change to the machine state, e.g., after every shutdown.

Autoencoders, trained on normal-operation data, can be
effective at detecting anomalies in groups of related PVs,
such as the PAR BPM signals and corrector strengths (see
Fig. 3), LTP BPM signals and corrector strengths, beam-to-
rf phases at different klystrons in the linac, linac injection
trigger timing and PAR kicker timings. They can help nar-
row down the search area for the source of the problem. If
during poor machine performance, a larger-than-normal re-
construction error is observed in one of these PV groups, the
operator can focus their investigation on that PV group. For
example, if the autoencoder for PAR BPM signals and correc-
tor strengths issues an anomaly warning, the problem likely
lies in the beam orbit in PAR. Variational and 𝛽-variational
autoencoders can be used for clustering of anomaly data, see
Fig. 4(b). Lastly, the compressed representation of the data
in the latent space can be used as input for ML classifiers.
This may result in a more robust model, which generalizes
better and is less prone to overfitting (not presented in this
paper).
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