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Abstract
During the operation of the Continuous Electron Beam

Accelerator Facility (CEBAF), one or more unstable super-
conducting radio-frequency (SRF) cavities often cause beam
loss trips while the unstable cavities themselves do not nec-
essarily trip off or present a fault. Identifying an unstable
cavity out of the hundreds of cavities installed at CEBAF is
difficult and time-consuming. The present RF controls for
the legacy cavities report at only 1 Hz, which is too slow
to detect fast transient instabilities. A fast data acquisition
system for the legacy SRF cavities is being developed which
samples and reports at 5kHz to allow for detection of tran-
sients. A prototype chassis has been installed and tested in
CEBAF. An autoencoder based machine learning model is
being developed to identify anomalous SRF cavity behavior.
The model is presently being trained on the slow (1 Hz)
data that is currently available, and a separate model will be
developed and trained using the fast (5 kHz) DAQ data once
it becomes available. This paper will discuss the present
status of the new fast data acquisition system and results of
testing the prototype chassis. This paper will also detail the
initial performance metrics of the autoencoder model, which
indicate good results on the available 1Hz data. This paper
will also discuss high-level software applications developed
to support the project.

INTRODUCTION
The Continuous Electron Beam Accelerator Facility (CE-

BAF) is a 5.5-pass, 12 GeV continuous wave (CW) electron
accelerator. CEBAF is comprised of two anti-parallel super-
conducting RF linacs connected by two sets of recirculation
arcs. Electron beams are then extracted into up to four exper-
imental halls to support nuclear physics experiments (Fig. 1).

Each linac is comprised of 200 superconducting radio-
frequency (SRF) cavities, plus 18 cavities in the injector,
which provide electron beam acceleration. During the op-
eration of CEBAF, any one unstable SRF cavity can cause
beam loss trips while the unstable cavities themselves do
not necessarily trip off or present a fault.

The existing tools and diagnostics for identifying unstable
SRF cavities at CEBAF are presently rather limited. Out
of the 418 SRF cavities at CEBAF, 306 are of the original
legacy CEBAF design which lacks the fast data acquisition
capabilities of the newer cavities. The legacy cavity diag-
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nostics are limited are limited to what is presented to the
EPICS [1] control system which is limited to a data rate of
1 Hz, which is not fast enough to capture transient instabil-
ities. Also, simply the number of cavities in the machine
makes the search for instabilities time consuming. Work
described in [2] addresses fault classification for the newer
SRF cavities at CEBAF. This work addresses identifying
unstable cavities of the legacy design.

To address these problems, a new fast data acquisition
(DAQ) system has been designed and is being installed on the
legacy SRF cavities at CEBAF. An autoencoder based ma-
chine learning anomaly detection model is being developed
to identify cavity instabilities from the fast DAQ data along
with archived EPICS data recorded by the MYA archiver [3].

Figure 1: 12 GeV CEBAF overview. The legacy SRF cavities
comprise most of the red regions of the linacs.

FAST DATA ACQUISITION SYSTEM
Each legacy SRF cavity has four analog outputs on its

control module:

• GMES: Measured Gradient. Should mirror the GSET
value in EPICS and should be stable to within 0.044%
during normal operations. Has DC and AC compo-
nents.

• PMES: Measured Phase. This is the phase in the cav-
ity measured against the absolute 70 MHz reference.
This also should mirror PSET in EPICS and should be
varying less than ±0.5∘.

• GASK: Gradient Drive. The change in klystron inci-
dent power needed to maintain the GMES value within
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specifications. This signal will change in response to
beam detuning or beam loading.

• PASK: Phase drive. The change in klystron phase to
the cavity needed to maintain the PMES value within
specifications.

Figure 2: Fast DAQ block diagram.

Each DAQ chassis has inputs for eight cavities, for a total 
of 32 channels (Fig. 2). High frequency noise is filtered with 
analog circuitry before being piped to ADCs. Each ADC 
has 8 channels that samples at 800 kilosamples per second 
(ksps, 100 ksps per channel). ADC samples are saved into 
dedicated circular buffers which are the Scope and Fault 
Buffers. The Scope Buffer (Fig. 3,  left) is a 2K buffer (2 
times 1024 samples) and is essentially a network attached 
oscilloscope which provides real time analysis of the control 
signals. The Fault Buffer (Fig. 3, right) is an 8K buffer 
and records 1.6 seconds of samples (when the adjustable 
sample rate is set to 5 kHz). This Fault Buffer will fill up 
during either a software initiated fault or initiated by a loss 
of signal from the machine protection system. The buffer 
will “freeze” at the time of the fault signal being received. 
The Fault Buffer data is fed to the autoencoder model for 
inference.

Figure 3: Fast DAQ raw waveforms screen.

Figure4 shows an example of the DAQ Fault Buffer data
as it will be input into the autoencoder model.

There is presently a prototype DAQ chassis installed in one
zone in the North Linac for testing. The prototype chassis
performs well; some data has already been collected from it.
Components for the remaining chassis are being procured
and assembly has begun. Production of the DAQ chassis
was delayed due to procurement problems related to COVID-
19. The original budget covered the cost of outfitting both
linacs with the fast DAQ chassis, but the cost of components
increased due to COVID-19 to the point that only one linac
can be outfitted within the allocated budget.

Figure 4: Fast DAQ waveform data.

ARCHIVED EPICS DATA

The MYA archiver records EPICS readbacks from the
SRF cavity controls at a rate of 1 Hz. For initial training and
development of the autoencoder model, data for 10 seconds
prior to a beam trip and 5 seconds after are collected from
the archiver. Figure 5 shows two data sets as examples. Note
that the first trace in each plot is the total linac current, where
at 𝑡 = 10 s, the total current drops to zero indicating a trip.
The left plot shows an example of a stable cavity. The plot
on the right shows that the measured gradient around the
time of the trip is unstable, therefore suggesting this cavity
caused the beam loss trip. The data samples were labeled
visually using such criteria as signals appearing unstable
shortly before or during the time where total linac current is
dropping to zero.

Figure 5: Examples of archived EPICS data from stable
(left) and unstable (right) cavities.

AUTOENCODER MODEL

An autoencoder model [4] was chosen because most of
the data will likely be of stable cavities; unstable cavities are
expected to be fewer and farther between. The problem is
one of anomaly detection rather than classification.
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The autoencoder model is being developed using Python
[5] and PyTorch [6]. Figure 6 shows the basic architecture
of the autoencoder model being developed for this project.

Conv1D

Conv1D

Conv1D

Linear Linear

Conv1D

Conv1D

Conv1D

Latent Space

Encoder Decoder

Figure 6: Autoencoder model.

The inputs to the model for archived EPICS are the same
four inputs collected by the Fast DAQ, except that they are
sampled at 1 Hz via EPICS and MYA rather than directly
at 5 kHz. The model also includes the total linac current
as an input. Early results on the archived EPICS data look
promising. The initial autoencoder model was trained on
3648 examples of stable cavities. We tested autoencoder
performance on a dataset of 912 stable samples and 112
unstable examples. Figure 7 shows the reconstruction losses
for cavity data sets labeled “good” (i.e. stable) and cavity
data sets labeled “bad” (i.e. unstable). Using 0.001 as the
threshold between “good” and “bad”, we get an accuracy of
∼ 0.99 (7 out of 1036 samples falsely identified as “bad”).
Development continues as more data is gathered and addi-
tional EPICS signals are included in the data sets. A similar
model will be developed and trained using the fast DAQ data
once it is available.

Figure 7: Initial results on archived EPICS data (zoomed in
for clarity).

HIGH LEVEL SOFTWARE TOOLS
A high-level software filtering daemon is being developed

to selectively harvest DAQ data (to conserve disk space)
for inference by the autoencoder model. When the daemon
detects a fast shutdown trip, it determines which machine
protection device(s) initiated the trip to decide the nature
of the trip. If the nature of the trip indicates that the trip

was possibly caused by an unstable SRF cavity which did
not itself present a fault, the DAQ Fault Buffer data, along
with a timestamp for retrieval from the archiver, are stored
on disk for inference by the autoecoder.

Another software tool (Fig. 8) is being developed to pro-
vide an interface to the autoencoder model to operators and
technicians. The tool will display, for one trip event, the
reconstruction loss for each of the cavities in the form of
a histogram. The reconstruction loss here is interpreted as
the likelihood of a cavity having caused a beam loss trip
due to instability. The interface thus allows operators and
technicians to quickly identify cavities that the autoencoder
predicts are unstable and should be investigated further.

Figure 8: Operator interface.

CONCLUSION
The initial results of the autoencoder model with the

archived EPICS data look promising. Data labeling, model
development, and model training will continue, along with
model development for the fast DAQ data and software tool
development. Procurement, assembly, and installation of
the fast DAQ hardware is underway.
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