
pyJSPEC - A PYTHON MODULE FOR IBS AND
ELECTRON COOLING SIMULATION*

H. Zhang†, M.W. Bruker, Y. Zhang, S.V. Benson
Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

Abstract
The intrabeam scattering is an important collective effect

that can deteriorate the property of a high-intensity beam
and electron cooling is a method to mitigate the IBS effect.
JSPEC (JLab Simulation Package on Electron Cooling) is
an open-source C++ program developed at Jefferson Lab,
which simulates the evolution of the ion beam under the
IBS and/or the electron cooling effect. The Python wrapper
of the C++ code, pyJSPEC, for Python 3.x environment has
been recently developed and released. It allows the users to
run JSPEC simulations in a Python environment. It also
makes it possible for JSPEC to collaborate with other ac-
celerator and beam modeling programs as well as plentiful
python tools in data visualization, optimization, machine
learning, etc. In this paper we will introduce the features of
pyJSPEC and demonstrate how to use it with sample codes
and numerical results.

INTRODUCTION
Intrabeam scattering (IBS) [1] is one important problem

that hadron collider designers need to consider. Due to
small-angle collisions between the ions, the emittance and
the momentum spread of the ion beam gradually increase
and therefore the luminosity of the collider decreases.
Electron cooling [2] is an experimentally proven leading
method to reduce the ion beam emittance by overlapping
the ion beam with a low-temperature electron beam while
both beams co-move inside the cooler in the same velocity
to allow thermal energy to transfer from the ion beam to
the electron beam. It can be used to mitigate the IBS effect.
JLab simulation package for electron cooling (JSPEC) is a
program to simulate the effects of both IBS and electron
cooling. Although originally designed to support the then
on-going electron-ion collider (EIC) project [3] at Jeffer-
son Lab, JSPEC has been extended to include most fre-
quently used formulas for the friction forces and variant
models of the electron/ion beam [4] and is provided to the
community as an open source tool for IBS and electron
cooling simulations. The program is developed using C++
in consideration of efficiency and has been tested on both
MS Windows 10 and Ubuntu 18.04 systems. Most compu-
tations are parallelized for shared-memory systems using
OPENMP to take advantage of the multi-core processors
widely available in desktop and laptop computers. The
source codes, the documents, and the examples are all
available in the github repository [5]. An online JSPEC
based on an earlier version has been developed by Radi-
asoft and is accessible through their cloud service

SIREPO [6]. It allows one to run JSPEC and visualize the
result inside a browser.

Although JSPEC runs independently, we see the need to
simulate the IBS and electron cooling together with other
collective effects, e.g. space charge effect and CSR effect,
and the convenience of using optimization tools in acceler-
ator design. This is the reason we developed pyJSPEC [7],
which ports most functions in JSPEC to Python 3.x envi-
ronment and brings the possibility to combine JSPEC with
other Python tools for accelerator modeling and optimiza-
tion.

FEATURES
The basic feature of JSPEC is to calculate the emittance

growth rate of the ion beam under the IBS and/or the elec-
tron cooling effect. The rate at time t is defined as
𝑟𝑟𝑖𝑖(𝑡𝑡) = 1

𝜖𝜖𝑖𝑖(𝑡𝑡)
d𝜖𝜖𝑖𝑖(𝑡𝑡)
d𝑡𝑡

, where 𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑠𝑠, representing the hori-
zontal, vertical, and longitudinal direction, and 𝜖𝜖𝑖𝑖 is the
emittance in the respective direction. For the IBS rate,
JSPEC provides the Martini model [8], the original
Bjorken-Mtingwa model [9] calculated by Nagaitsev’s
method [10], and the complete Bjorken-Mtingwa model
with vertical dispersion and non-relativistic terms
included [11]. The electron cooling rate is calculated sta-
tistically on a group of sample ions, each receiving a kick
by the friction force. The rate is calculated as the relative
change of the emittance per unit time before and after the
kick. JSPEC provides several formulas [12-15] for both the
non-magnetized and the magnetized friction force. Using
different formulas in the transverse and the longitudinal di-
rection is allowed.

JSPEC also simulates the evolution of the ion beam un-
der the IBS effect and/or the electron cooling effect. The
RMS dynamic model represents the ion beam by its mac-
roscopic parameters, i.e. the emittances, the momentum
spread, and the bunch length (for a bunched beam), calcu-
lates the instant expansion rate r at a time t and updates the
parameters using 𝜖𝜖𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡) = 𝜖𝜖𝑖𝑖(𝑡𝑡)exp (𝑟𝑟𝑖𝑖Δ𝑡𝑡) for the
time step Δ𝑡𝑡. The particle model applies kicks due to IBS
and electron cooling to sample ions and moves them by a
random phase advance for the betatron and synchrotron os-
cillation in Δ𝑡𝑡. The turn-by-turn model is similar to the par-
ticle model but the betatron and synchrotron motion is
modeled by a linear transfer matrix and the simulation is
carried out in a turn-by-turn manner.

BENCHMARK
 JSPEC has been benchmarked with BETACOOL [12]

for various scenarios. The two programs agree well. For
the typical simulations we have done for the EIC project, a
significant improvement of efficiency has been achieved

* Work supported by the U.S. Department of Energy, Office of Science,
Office of Nuclear Physics under contract DE-AC05-06OR23177.
† hezhang@jlab.org

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-WEPA24

WEPA24C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

672 09: Computing and Data Science for Accelerator Systems

even without using multiprocessing in JSPEC. Parallel
computation will further improve the efficiency.

We also compared JSPEC simulations with experimental
data, obtained from the collaboration of Jefferson Lab in
the U.S. and Institute of Modern Physics in China from
2016 to 2019. Figure 1 shows the cooling of the 86Kr25+
beam with an energy of 5 MeV/nucleon using electron
pulses with a length varying from 600 ns to 1000 ns. A
longer pulse length means a longer overlap between the
two beams and a stronger cooling, which is observed
through the larger slope of the plots. The solid lines in the
plot are the results from the simulation using the turn-by-
turn model, the parameters used in which are listed in
Table 1 [16]. The dots are experimental data. In all the
cases, the simulation agrees with the experiment reasona-
bly well.

Figure 1: Cooling the 86Kr25+ beam using pulsed electron
beam, simulation (solid lines) and experiments (dots).

Table 1: Electron Cooling Simulation Parameters

e- beam radius 15 mm
Cooler length 3.4 m
Magnetic field 0.1 T
𝛽𝛽𝑥𝑥/𝛽𝛽𝑦𝑦 in the cooler 10/17 m
e- beam peak current 30 mA
e- beam temperatures 200/6 meV
Ion beam normalized emittance 0.6 mm mrad
Ion beam RMS bunch length 10.5 m
Ion beam RMS momentum spread 7 × 10−4
Lorentz factor 𝛽𝛽/𝛾𝛾 for both beams 0.103/1.005

pyJSPEC
pyJSPEC is the Python wrapper for JSPEC, developed

with Pybind 11 [17]. It is a library for Python 3.x. After
importing the library, users get access to most of the JSPEC
functions. Figure 2 shows an example on calculating the
expansion rate due to both the IBS and the electron cooling
respectively and carry out a dynamic simulation using the
particle model. After importing JSPEC, we create the pro-
ton beam, the ring, the cooler, and the electron beam by
calling the respective functions. We need to assign values
to the arguments before calling the functions, which is
omitted in the example to save space. Line 25 – 30 shows

how to calculate the electron cooling rate. The Parkhom-
chuk formula is chosen for the friction force calculation
and the expansion rate is calculated over 40,000 sample
protons. Line 32 – 34 shows how to calculate the IBS ex-
pansion rate using the Bjorken-Mtingwa model. In line 37
– 39, sample protons are created for the following dynamic
simulation using the particle model. This step can be omit-
ted if the RMS dynamic model is used. In line 43 – 48, we
set up the time to simulate and the number of steps, choose
which effects to be included, and finally run the simulation.

Figure 2: pyJSPEC simulation.

JSPEC works together with other Python libraries. Fig-

ure 3 shows an example, in which we use NSGA_II, a non-
dominated sorting-based multi-objective evolutionary op-
timizer from the pygmo library [18], together with JSPEC.
We have seen that introducing transverse dispersions at the

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-WEPA24

09: Computing and Data Science for Accelerator Systems

WEPA24

673

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

cooler for the ion beam can transfer the cooling in the lon-
gitudinal direction to the transverse directions. A disper-
sion in one transverse direction can increase the cooling in
the same direction but may reduce the cooling in the other
transverse direction. In the example, we ask the optimizer
to find better values of the dispersions within 0 to 5 meters
to obtain stronger cooling in both the horizontal and the
vertical directions. First we set up the cooling rate calcula-
tion as usual. Then we define a problem, in which the fit-
ness function takes the dispersions as input and outputs the
new cooling rates. In the end, we create the problem for
pygmo, select the NSGA_II optimizer, and run it for
10,000 generations. Figure 4 shows the initial population.

Figure 3: JSPEC with pygmo NSGA_II optimizer.

Figure 4: Initial population and the population after 10,000
generation of evolutions.

by blue circles, which is randomly generated, and the final
population by red squares. The horizontal/vertical axis
shows the horizontal/vertical expansion rate. The negative
sign means the emittance reduces. Clearly the optimizer
pushes the population to an area with larger cooling rates.

Same with the C++ JSPEC, pyJSPEC also supports par-
allel computation on the shared-memory structure with
OPENMP. The users have the choice to compile a parallel
pyJSPEC by adding the flag OMPFLAGS=-fopenmp to the
make command. By default, the parallel version will use all
the available threads. But the users can set the number of
threads to use. Table 2 shows an example, in which the
electron cooling process together with the IBS effect for a
proton beam is simulated for 50,000 steps using 40,000
particles on a personal computer running an Intel i7-4820k
CPU with four cores and eight hyperthreads. When four
threads are used, the computation time is reduced by
slightly more than 40%. But the hyperthreads do not help.

Table 2: Computation Using Multi-Threads

No. of
threads Time (s) No. of

threads
Time (s)

1 1085 5 742

2 779 6 864

3 663 7 957

4 648 8 2643

SUMMARY AND FUTURE WORK
JSPEC is an open-source program developed at Jeffer-

son Lab for IBS and electron cooling simulations. It has
been benchmarked with other programs and experimental
data. The source code, manuals, and examples can be found
in the github repository. A Python wrapper, pyJSPEC, has
been developed and most functions from JSPEC has been
ported to Python 3.x environment. We have shown exam-
ples on how to perform IBS and electron cooling simula-
tions in Python and how to use an optimizer together with
pyJSPEC.

We are currently trying to make JSPEC adapted for
BMAD [19], using the C++ interface in BMAD code.
BMAD is a widely used accelerator modeling code and it
provides many functions for lattice design, particle track-
ing, beam tracking, spin tracking, space charge effect sim-
ulation, CSR effect simulation, etc. When JSPEC works to-
gether with BMAD, we will be able to include a better dy-
namic model of the accelerator and some other dynamic
effects in IBS and electron cooling simulations.

ACKNOWLEDGMENT
The authors thank all the users for their valuable feed-

back and thank David Bruhwiler, Paul Moeller, Ilya Po-
gorelov, and Stephen Coleman at Radiasoft for fruitful dis-
cussions and for bringing JSPEC to SIREPO.

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Nu-
clear Physics under contract DE-AC05-06OR23177.

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-WEPA24

WEPA24C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

674 09: Computing and Data Science for Accelerator Systems

REFERENCES
[1] A. Piwinski, “Intra-beam scattering”, in Proc. 9th Int. Conf.

on High Energy Accelerators, Stanford, CA, USA, 1974,
p. 405.

[2] G. Budker et al., “Experimental studies of electron cooling”,
Part. Accel., 1976, pp. 197-121.

[3] S. Abeyratne et al., “MEIC design summary”,
2015. doi:10.48550/arXiv.1504.07961

[4] H. Zhang et al., “Electron cooling simulation code develop-
ment”, Rep. JLAB-TN-21-002, Jefferson Lab, 2021.

[5] JSPEC, https://github.com/JeffersonLab/
ElectronCooling

[6] SIREPO, https://www.radiasoft.net/sirepo

[7] pyJSPEC, https://github.com/zhanghe9704/
jspec2-python

[8] M. Martini, “Intrabeam scattering in the ACOL-AA ma-
chines”, Rep. CERN-PS-8-4-9-AA, CERN, 1984.

[9] J. Bjorken and S. Mtingwa, “Intrabeam scattering”, Part.
Accel., vol. 13, pp. 115-143, 1982.

[10] S. Nagaitsev, "Intrabeam scattering formulas for fast numer-
ical evaluation", Phys. Rev. ST Accel. Beams, vol. 8,
p. 064403, 2005.

[11] F. Zimmermann, “Intrabeam scattering with non-ultrarela-
tivistic corrections and vertical dispersion for MAD-X”,
Rep. CERN-AB-2006-002, CERN, 2005.

[12] I. Meshkov et al., “BETACOOL physics guide”, Joint Insti-
tute for Nuclear Research, Dubna, Russian Federation,
2007.

[13] I. Meshkov, “Electron cooling: status and perspectives”,
Phys. Part. Nucl., vol. 25, pp. 631-661, 1994.

[14] V. Parkhomchuk, “New insights in the theory of electron
cooling”, Nucl. Instrum. Methods Phys. Res., Sect. A, vol.
441, pp. 9-17, 2000.

[15] Y. Derbenev and A. Skrinsky, “The effect of an accompany-
ing magnetic field on electron cooling”, Part. Accel., vol 8,
pp. 235-243, 1978.

[16] M. Bruker et al., “Demonstration of electron cooling using
a pulsed beam from an electrostatic electron cooler”, Phys.
Rev. Accel. Beams, vol. 24, p. 012801, 2021.

[17] Pybind11, https://pybind11.readthedocs.io
[18] pygmo, https://doi.org/ 10.5281/zenodo.4585131
[19] BMAD, https:// www.classe.cornell.edu/bmad/

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-WEPA24

09: Computing and Data Science for Accelerator Systems

WEPA24

675

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

