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Abstract 
Data-driven prediction of future faults is a major re-

search area for many industrial applications. In this work, 
we present a new procedure of real-time fault prediction 
for superconducting radio-frequency (SRF) cavities at the 
Continuous Electron Beam Accelerator Facility (CEBAF) 
using deep learning. CEBAF has been afflicted by frequent 
downtime caused by SRF cavity faults. We perform fault 
prediction using pre-fault RF signals from C100-type 
cryomodules. Using the pre-fault signal information, the 
new algorithm predicts the type of cavity fault before the 
actual onset. The early prediction may enable potential 
mitigation strategies to prevent the fault. In our work, we 
apply a two-step fault prediction pipeline. In the first step, 
a model distinguishes between faulty and normal signals 
using a U-Net deep learning architecture. In the second step 
of the network, signals flagged as faulty by the first model 
are classified into one of seven fault types based on learned 
signatures in the data. Initial results show that our model 
can successfully predict most fault types 200 ms before 
onset. Our fault prediction model shows poor model 
performance on fast-developing fault types.  

INTRODUCTION 
The Continuous Electron Beam Accelerator Facility 

(CEBAF) at Jefferson Lab is a high power, continuous 
wave recirculating linear accelerator (linac) servicing four 
different experimental nuclear physics end stations [1]. 
CEBAF completed an energy upgrade from 6 GeV to 
12 GeV in 2017 which required the installation of 11 
additional cryomodules, called C100s for their capability 
to provide 100 MV of energy gain [2]. A schematic of 
CEBAF with locations of C100 cryomodules is shown in 
Fig 1. Each cryomodule is composed of 8 superconducting 
radio-frequency (SRF) cavities. In addition, a digital low-
level radio frequency system (LLRF) is developed to 
regulate the new cryomodules.  

CEBAF experiences frequent short machine downtime 
trips caused by numerous SRF system faults, especially 
when cavity gradients are being pushed to their limits. In 
2019, CEBAF experienced an average of 4.1 RF downtime 
trips per hour, culminating in approximately 1 hr of beam 
time lost each day [3]. A data acquisition system is 
implemented in the C100 cryomodules to record data to 

investigate the nature and the origin of the SRF faults. 
These recorded waveform data are analyzed by a subject 
matter expert (SME) to determine the cavity that caused 
the trip and the type of fault. This is a non-trivial, laborious 
task. Typically, a SME performs this task days or weeks 
after the events. Previous work successfully addressed this 
fault classification task with machine learning (ML) [4]. In 
this work, our goal is to develop deep learning-based 
artificial intelligence (AI) techniques to predict the fault 
before its onset.  

 
Figure 1: A schematic of CEBAF with the experimental 
halls (A, B, C, and D), and the locations of the C100 cry-
omodules labeled [3]. 

DATA 
The data acquisition system in CEBAF synchronously 

acquires timestamps and saves waveform records of 17 
different RF signals from the C100 cryomodule. The data 
acquisition system includes two primary components, the 
low-level RF (LLRF) controls and the experimental 
physics and industrial control system (EPICS), along with 
a collection of high-level applications. These two 
components work together to generate and save data for 
further analysis. Each of the recorded 17 signals is 8192-
time steps long. The duration of the recorded signals is 
approximately 1637.4 ms at a sample interval of 0.2 ms. 

There are two types of datasets used for this study. The 
first type is the normal running dataset which is 
representative of normal operating conditions (i.e. no 
faults). For this experiment, we use 60,000 normal running 
examples of a 100 ms time window. The second type of the 
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dataset is the faulty data collected from RF cavity trip 
events which is presented in Fig. 2. Note that 
approximately 94% of the captured waveform (t < 0) 
represents pre-fault activity, with t = 0 the fault onset, and 
t > 0 the post-fault data. Table 1 summarizes the dataset 
composition with respect to fault types. We use 4,983 
faulty events for this analysis. In this experiment, we use 
just 4 of the 17 recorded signals (GMES, GASK, CRFP, 
DETA2), identified by SMEs as having the greatest 
predictive power. We perform min-max normalization for 
each channel of the signal which transform signal values 
between 0 and 1. We utilize a 100 ms window to predict 
the impending faults.  

 
Figure 2:  Waveform captured by the data acquisition sys-
tem during a fault event. The total duration of the wave-
form is 1.64 seconds (-1535 ms to +102.4 ms). 

Table 1: Dataset Representation Per-class for Fault Type 
Detection Tasks 

Fault Type # Of Events 
100 ms quench 608 
3 ms quench 541 
electronic quench 674 
microphonics 720 
heat riser choke 709 
control fault 848 
single cavity turn off 883 

CAVITY FAULT PREDICTION 
Cavity fault prediction is a supervised machine learning 

problem, with ground truth fault labels for recorded data 
provided by SMEs. The ML model is trained using histor-
ical data and used to forecast future events. The dataset 
used for the prediction task pertaining to normal running 
signals and faulty events recorded by the data acquisition 
system. We use the pre-fault signals to predict faults 200 
ms before their onset. We propose a two-step pipeline to 
perform this task which is shown in Fig. 3. Model A is a 
binary classification network used to distinguish wave-
forms describing impending faults from stable signals. 
Those signals identified as an impending fault by model A 
are used as input to model B which is a multi-class classi-
fication network to predict the fault type, all before the 
fault onset.  

 
Figure 3: Two-step cavity fault prediction pipeline. 

MODEL A: BINARY CLASSIFICATION 
The goal of model A is to perform binary classification 

which identifies waveforms describing impending faults. 
In the binary classification task, we use U-Net architecture 
which is a convolutional network consisting of a 
contracting path (encoder) and an expansive path (decoder) 
that gives it the characteristic U-shaped architecture [5]. In 
the encoder, the spatial information is reduced while 
feature information is increased. The expansive pathway 
combines the feature and spatial information through a 
sequence of up-convolutions and concatenations with 
high-resolution features from the contracting path. The 
block diagram of the U-Net architecture is shown in Fig. 4. 
The network is trained to reconstruct the input which 
consists of normal running examples. During testing, both 
the normal running signals and impending fault signals 
pass through the network. Since the network is not trained 
using the faulty signals, the signal reconstruction loss for 
the faulty examples will be much larger than the normal 
running signals. Reconstructions with a higher mean 
square error (MSE) between input and output are 
considered a potential fault event. 

 
Figure 4: U-Net architecture for binary classification. 

We trained the U-Net using 50,000 normal running 
examples and validate it using 9,000 normal running 
examples. In the experimental setting we use a learning rate 
of 10-6, Adam optimizer, MSE loss, and run for 500 epochs. 
In the test case, we use 997 faulty examples and 997 normal 
running examples to evaluate the model performance. The 
receiver operating characteristic (ROC) curve of the model 
performance is presented in Fig. 5 for different times 
before the fault onset. As expected, the ROC curve 
illustrates that model performance improves as the time to 
the fault onset gets smaller. As the time window of the 
faulty signals moves away from the fault, the model 
performance degrades. Table 2 presents the area under the 
ROC curve (AUC) values for the different times before the 
fault onset. As the prediction time increases, the AUC 
value decreases. The AUC value for 200 ms before the fault 
onset is 0.7126. For 200 ms before the fault onset, we input 
1994 test examples to the model from which 886 examples 
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(with a threshold value of 0.030 for the MSE) identified as 
impending fault. Among the 886 predicted impending 
faults, 600 cases were the actual faults. 

 
Figure 5: ROC curve for different time before the fault. 

Table 2: Area Under the Curve (AUC) of Binary Classifi-
cation Task at Different Time 

Time before fault 
onset (ms) 

AUC 

0 0.9936 
5 0.8308 

10 0.8070 
20 0.7803 
50 0.7477 

100 0.7323 
200 0.7126 

MODEL B: MULTI-CLASS 
CLASSIFICATION  

The goal of model B is to perform multiclass 
classification of the different fault types. We use a 
combination of Long Short-Term Memory (LSTM) and 
Convolutional Neural Network (CNN) for the model 
architecture. A schematic of the model is presented in 
Fig. 6. We concatenate the output of the bi-directional 
LSTM and 3-layer CNN network to generate the 
classification output. To reduce overfitting, we use a 
dropout of 0.8 in the LSTM network. We use 8 classes for 
this classification task which include 7 different fault types 
and one class for normal signals. If a normal running signal 
passes through model A as a faulty signal, model B has the 
option to identify that normal running signal.  

 
Figure 6: Multi-class classification model diagram. 

We train the network using 9,000 examples with a 
combination of normal and faulty examples. The network 
validates using 1,994 validation examples. The input of the 
test dataset for model B is coming from the output of model 
A which was classified as impending faults. The confusion 
matrix is presented in Fig. 7. The overall accuracy of the 
multiclass classification is 76.5% for predictions made 
200 ms before the fault onset. Slow-growing faults such as 
heat riser choke and microphonics showed higher f1-scores 
(87.3% and 83.3% respectively). Whereas some fast-
growing faults such as 3ms quench and single cavity turn 
off showed lower f1-scores (45.9% and 47.2% 
respectively). These fast-developing faults only exhibit 
signatures of an impending event very close to onset. 

 

 
Figure 7: Fault identification confusion matrix. 

CONCLUSION 
In this work, we have proposed a two-step prediction 

pipeline for predicting SRF faults in C100 cryomodules. 
Initial results show the model can predict the fault types 
200 ms before the fault onset with reasonable accuracy. 
The model shows good performance for slow-developing 
fault types, while identifying fast-developing faults 
represents a challenge.  Future work will explore our ability 
to make system changes on timescales of a few hundred 
milliseconds in an effort to mitigate some of the fault that 
develop over a longer time, such as microphonics. 
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