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Abstract
The controls system at FNAL records data asynchronously

from several thousand Linac devices at their respective ca-
dences, ranging from 15 Hz down to once per minute. In
case of downtimes, current operations are mostly reactive,
investigating the cause of an outage and labeling it after the
fact. However, as one of the most upstream systems at the
FNAL accelerator complex, the Linac’s foreknowledge of
an impending downtime as well as its duration could prompt
downstream systems to go into standby, potentially lead-
ing to energy savings. The goals of the Linac Condition
Anomaly Prediction of Emergence (L-CAPE) project that
started in late 2020 are (1) to apply data-analytic methods
to improve the information that is available to operators in
the control room, and (2) to use machine learning to auto-
mate the labeling of outage types as they occur and discover
patterns in the data that could lead to the prediction of out-
ages. We present an overview of the challenges in dealing
with time-series data from 2000+ devices, our approach to
developing an ML-based automated outage labeling system,
and the status of augmenting operations by identifying the
most likely devices predicting an outage.

INTRODUCTION
Machine Learning (ML) and Artificial Intelligence (AI)

have become ubiquitous in recent years, with applications
ranging from computer vision to speech recognition to in-
creasing the autonomy of controlled systems. This devel-
opment has in part been furnished by the proliferation of
data sources: Cheap, easy to deploy sensors permit the in-
strumentation and monitoring of ever more systems. The
controls system for the accelerator complex at the Fermi Na-
tional Accelerator Laboratory (FNAL) monitors and issues
commands to 4000+ control system parameters in the linear
accelerator (Linac) at frequencies ranging from 15 Hz to
once every few minutes. Upon the start of a beam interrup-
tion, this data is used by accelerator operators to investigate
the source of the unplanned beam outage from the FNAL
Main Control Room. The electric power consumed during
these outages adds up to a considerable amount of energy
used (see Table 1) and could be reduced significantly if the
duration and type of outage were identified quickly and accu-
rately. We present a pipeline to enable the use of ML/AI that
augments the data flow to the control room with analytics of
outages, reducing the time to label them meaningfully and
minimizing the number of incorrect or inconsistent labels.
∗ milan.jain@pnnl.gov

Table 1: Energy Use During Beam Outages
Event Length Event Count Duration (hrs) Energy (MWh)
< 5 s 1626 1.04 0.182
< 10 s 321 0.59 0.104
< 60 s 205 2.01 0.351
< 120 s 201 4.70 0.822
< 10 m 169 11.69 2.05
≥ 10 m 47 111.35 19.49

DESCRIPTION OF THE DATA SOURCES
The accelerator control system’s Data Logger nodes

record data streams into circular buffers. To store this data
for a longer period than the lifetime of the circular buffers,
this project requested a data acquisition pipeline to write
the data to long-term storage using an industry standard for-
mat, HDF5 [1]. This pipeline was created by the Controls
Department developers using modern tools to solve a com-
mon problem and is being used on other ML projects. This
new pipeline allows projects to choose a data source without
modifying requests allowing L-CAPE to switch from using
historical data to live data seamlessly.

In the current configuration, L-CAPE makes 5567 re-
quests over 4292 control system parameters and stores each
request in an HDF5 group. The HDF5 output is collected
by the hour with an average file size of 644 MB per period.

DATA PREPROCESSING PROCEDURES
Hourly raw data in HDF5 format is sampled from devices

at their respective cadences and timestamped by independent
front-end nodes’ clocks. A reference clock is required to
time align the data for analyzing and modeling the devices
together. By using a reference clock capturing the highest
frequency devices (which is 15 Hz in this case), loss of in-
formation can be avoided for all devices. Therefore, for time
alignment, we use timestamps at 15 Hz starting at the first
timestamp of each hourly data file. Because there is a new
file every hour, the reference clock reset at the end of every
hour, thus reducing shift in data over time because of 15 Hz
sampling rate.

Using a reference clock and combining the data removes
redundant timestamps, which, together with applying the
lossless snappy compression algorithm [2], reduces the disk
space taken by the data (∼20x), accelerates data read/write
operations, and allows practical analysis and visualization of
multiple devices across many days simultaneously. Further-
more, for more speedup in read/write, this combined data is
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Figure 1: Heatmap visualization of a fault.

Table 2: Evaluation of Operator-Defined Labels
True Positive False Negative False Positive

Bit 27 58 54 161
Bit 28 64 48 111
27 | 28 84 28 448

27 & 28 25 87 7

stored in a binary Parquet [3] file. For analysis and visual-
ization, the data is loaded into a Pandas DataFrame [4, 5].
Figure 1 shows the heat map visualization of the data (nor-
malized range, 0–1) from a subset of devices for a single
fault instance – “LRF3 Driver Anode Overload”. Different
devices show different patterns during this fault, with vary-
ing start time and duration. On comparing this heat map
with other faults and other instances of the same fault, we
found that the pattern could vary not only from one fault type
to another but also from one instance of a fault to another.

OUTAGE LABELING
First stage of our workflow is to train a model that captures

“normal” operation. Thus, we created a list of outages with
labels and times reported by the operators. A data-driven
method to identify downtimes could use the beam permits
(bits 27 and 28 for the downstream and upstream permits,
respectively), but given the challenge of identifying a combi-
nation that agrees with the human-created labels (see Table 2
for an agreement between different combinations of the per-
mit bits and the operator-defined labels), we proceed with
the latter as the “ground truth” for this study.

MODELING
Since training of neural networks for all devices is com-

pute expensive, we explored two statistical modeling tech-
niques (thresholding and filtering) in addition to an ML-
based method. Thresholding assumes that device value lower
than the 5th percentile or higher than the 95th percentile is
anomalous. Thus, for thresholding, the reconstruction error
at any timestamp is defined in Eq. 1, where 𝑅𝑡

𝑒 and 𝐷𝑡 in-

dicate the device value at time t, and 𝐷low and 𝐷high depict
5th and 95th percentile from the device’s data distribution:

𝑅𝑡
𝑒 =


𝐷low − 𝐷𝑡 , 𝐷𝑡 < 𝐷low

0, 𝐷low ≤ 𝐷𝑡 ≤ 𝐷high

𝐷𝑡 − 𝐷high, 𝐷high < 𝐷𝑡

. (1)

In another statistical approach, the data is passed through
a low-pass filter (to filter the high-frequency noise) followed
by a high-pass filter that filters brief anomalies/spikes. The
filtered signal is then compared with the actual signal to
compute the reconstruction error.

Third, we implemented TADGAN - an unsupervised
anomaly detection approach built on Generative Adversarial
Networks (GANs) by Geiger et al. [6]. TADGAN can be
trained on multivariate time series data, however, given the
dynamic logging of devices and difference in sampling fre-
quency of the devices, training a single model for all devices
was infeasible. Therefore, one model per device was trained
and the reconstruction error for each device is the difference
between the reconstructed signal and the actual signal.

For all three techniques, the final anomaly score is the sum
of device-level reconstruction error. Since data from devices
is sampled at different frequencies, before calculating the
anomaly score, device-level errors are downsampled to 1 s
with aggregator function max. Figure 2 compares anomaly
score from TADGAN with operators’ label (yellow region)
and bit permits (dotted lines) on a specific day.

EVALUATION
Table 3 summarizes the detection accuracy based for one

month of data (Mar-2020) for all three techniques. Based
on the feedback from the domain experts, devices related
to status bits and control parameters were filtered for the
modeling, thus limiting the device count to 2081. Since
training TADGAN is compute expensive, only 53 devices
with complex data patterns were trained using the TADGAN.
If compared on f1-score, the analysis indicates that statisti-
cal techniques are performing better (high recall) than the
TADGAN. However, if the distribution of device data is
multi-modal (for instance, devices running at different set-
tings), simpler statistical techniques like thresholding tends
to perform poor. Akin to that, while filtering performs well
on longer time-series, it tends to perform poorly on smaller
time windows, and thus for real-time inference. Therefore,
an ensemble of both statistical and deep-learning models are
required for a reasonably accurate fault detection framework.

When compared with downstream (bit-27) and upstream
bit permit (bit-28), we noticed that the false negative in-
creases significantly. Figure 3 explains the reason for this for
the filtering approach. The fault duration plot (on the right)
shows bit permits frequently go down only briefly, and such
instances are neither reported in the ground truth, nor can
be detected by any of the techniques discussed.

Once a fault is detected, the next step is to explain and la-
bel it. The operator’s labeling depends on subjective opinion
and experience, and therefore could be rather inconsistent.
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Table 3: Performance Comparison. Data for March, 2021
#Devices True False False Precision Recall F1-Score

Positive Negative Positive
Thresholding 2081 99 13 210 0.32 0.88 0.47
Filtering 2081 105 7 279 0.27 0.94 0.42
TADGAN 53 51 61 443 0.1 0.45 0.17
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Figure 2: TADGAN anomaly score for different pathologies.

Figure 3: Evaluating the false negatives.

In our preliminary analysis, we noticed that faults corre-
spond to a specific pattern of device-level reconstruction
errors. Figure 4 compares two such faults with the help of a
circular bar chart, where bar length indicates mean of max
reconstruction errors during all the instances of two faults.
It is evident that devices with high reconstruction error are
correlated with the ground truth label.

CONCLUSION AND OUTLOOK
We have presented a pipeline to process data from the

FNAL accelerator control system for automated fault detec-
tion and labeling. Our tailored approach of applying simple
thresholding and filtering methods to model normal behavior
by default and using machine learning techniques only where
necessary provides a good balance of computational through-
put and algorithmic performance. The high dimensionality
of the data provides adequate separation of different types of
outages. Our pipeline of data cleaning, alignment, and basic
analysis is currently being implemented for near-real-time

(a) LRF2 Driver Anode OL

(b) LRF3 Driver Anode OL
Figure 4: Different faults can be distinguished by their sig-
natures in different subsystems (RF1-5).

data analytics that augment the information available in the
control room. Future studies will improve the performance
of the labeling and prediction, and the data throughput to
improve the decision-making ability in the control room
with the goal of achieving energy savings by improving the
operational efficiency and predictive capability.
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