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Abstract
Modern linear particle accelerators use superconducting

radio frequency (SRF) cavities for achieving extremely high-
quality factors (Q) and higher beam stability. The assembly
process of the system, although with a much more strin-
gent cleanness requirement, is very similar to the ultrahigh
vacuum (UHV) system operation procedure. Humans, who
are conventionally the operators in this procedure, can only
avoid contaminating the system by wearing proper sterile
personal protection equipment to avoid direct skin contact
with the systems, or dropping particulates. However, humans
unavoidably make unintentional mistakes that can contami-
nate the environment: cross contamination of the coverall
suits during wearing, slippage of masks or goggles, damaged
gloves, and so forth. Besides, humans are limited when oper-
ating heavy weights, which may lead to incorrect procedures,
or even worse, injury. In this paper, we present our recent
work on a viable and cost-effective machine automation sys-
tem composed of a robotic arm and a computer vision system
for the assembly process in a cleanroom environment, for
example for SRF string assemblies, and more.

INTRODUCTION
Background

Modern particle accelerators use superconducting ra-
diofrequency (SRF) cavities to achieve extremely high qual-
ity factors (Q) and higher beam stabilities [1–3]. Most of the
SRF cavities and their associated systems need to be assem-
bled in a dedicated cleanroom space and at a custom SRF
test stand. The assembly process of the system, although
with a much more stringent cleanness requirement, is very
similar to the ultrahigh vacuum (UHV) system operation
procedure.

Humans, who are conventionally the operators in this pro-
cedure, can only avoid contaminating the system by wearing
proper sterile personal protection equipment, such as cover-
alls, gloves, facial masks, goggles, etc., in order to avoid any
direct skin contact with the system. The operators also need
to pay special attention to avoid dropping lints or dander
in the system [4]. The reasons why humans are needed in
the assembly process are unquestionably clear: the ability
to identify and solve problems in operando, and to evaluate
the assembly quality and make adjustments based on rich
experience. However, the disadvantages of having humans
in the process are often ignored: humans make unintentional
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mistakes that can contaminate the system - cross contamina-
tion of the coverall suits during wearing, slippage of masks
or goggles, damaged gloves, and so forth.

High energy physics, nuclear physics and basic energy
sciences experimental researchers have recently been inves-
tigating solutions in which the assembly can be done or
at least dominated by robotic arms instead. Robotic arm
manufacturers, such as Yaskawa, FANUC and KUKA have
been actively developing robot systems that are suitable for
cleanroom operations. The industrial arms can have their
repeatability as high as ±30 µm and maximum payloads of
tens of kg. Although the convenience and benefits of using
robotic arms in assembly processes have been widely rec-
ognized, the acceptance of robotic automation systems is
still relatively low in R&D environments, compared to other
industries like automotive manufacturing, welding, chemical
processing, etc.

Our Methods
Under a grant from the DOE SBIR program, we were

awarded for the development of a viable and fully automated
robotics system equipped with computer vision hardware
and AI/ML algorithms for the assembly process in a clean-
room environment, for SRF systems and other cleanroom
assembly processes. Our computer vision system is powered
by 3D cameras and image processing to identify arbitrary
structures for robotic arms to mate parts together. Our solu-
tion provides the versatile integration of object recognition
and repeatable specialized control of industrial grade robotic
arms. It is capable of reducing or eliminating human inter-
ventions in the assembly procedure. Our system runs on
high-level programming languages, which allows for both
user customization and hassle-free operations without the
need for controlling the arms using teaching pendants.

In our finalized product, for which the workflow is shown
in Fig. 1, our system will first automatically detect a target
object (object-of-interest) using a 3D camera mounted on
the arm (“eye-in-hand”) and advanced vision algorithms.
The computer vision system then registers the “pose”, which
contains both the position and orientation, of the target object
and passes that information to a robotic arm, on which the
camera is mounted. Then, the arm will grab another object
(object-in-hand) that needs to be assembled onto the object-
of-interest, and mate the two objects together, based on a
calculated path and instructions for the arm. In cases where
fasteners are needed to tighten flanges or similar interfaces
together, another robotic arm that is also equipped with an
eye locates the mated objects, places the fasteners through
the holes, and tightens them.
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Figure 1: The workflow of our ultimate fully automated robotic system for machine-aided assembly processes.

In this paper, we discuss the preliminary but extremely
promising results obtained in the 9-month project. We suc-
cessfully implemented image segmentation and pose regis-
tration algorithms to isolate an object-of-interest from the
background and recognize its position and orientation us-
ing images collected by a 3D camera. We also managed
to calibrate, program and operate an industrial robotic arm
from Yaskawa Motoman to manipulate objects both in a sim-
ulation software RoboDK and in real-life operations. The
computer vision and robotic control systems were integrated
together to demonstrate the mating of two vacuum com-
ponents: a tee and nipple with both 2.75” conflat flanges.
The demonstration video is available online. Our results
delivered the most important milestones for our concept and
confirmed the feasibility of our machine-aided assembly
automation.

COMPUTER VISION SYSTEM
For the computer vision system, the main and ultimate

goal is to obtain accurate information about the pose of an
object-of-interest with respect to the camera (“eye”) of the
system. The pose of an object consists of both the position
and orientation of the object. The pose information is then
passed on to the robotic control system to instruct the robot to
move an object-in-hand, which is to be mated with the object-
of-interest, to a certain destination based on the geometry.
To get the accurate object pose, we implemented a two-steps
approach. The first step is to get a global pose estimation of
the object-of-interest from a 3D camera; the second step is
to refine the object pose by local registration, for which there
is a mature algorithm called ICP [5]. In case of a rotatable
flange (discussed later in this section), an additional step with
registration can be added to align holes and leak grooves.

We carried out two approaches for the global registration.
In the first approach, we used a “pose estimation” from a 2D-
keypoints neural network (NN) and PnP [6]. An algorithm
“singleshotpose” [7], which was based on the YOLOv2 [8] al-
gorithm, was used and the model was trained with “ground
truth” pose information with the help from ArUco mark-
ers. Our ArUco markers were precisely painted on a flat

Figure 2: Examples of our NN-predicted and ground truth
bounding boxes overlaid with test images of real image
dataset for global registration.

Aluminum plate and work well as a rough estimate for the
object’s pose. The NN is then able to determine the key
control points from any 2D RGB image that has the object-
of-interest in it, as shown in Fig. 2.

The second approach does not rely on an ArUco plate or
markers, which makes it more flexible with the size of the
object-of-interest and the camera angles because the markers
could possibly be blocked. Two steps are needed. First, a 2D
(RGB) image segmentation based on NN algorithms, where
the object-of-interest is selected and separated from the rest
of the image, is done to work as a “filter” for the point cloud
data of the same image. Another NN-based algorithm is used
to do the registration with the isolated point cloud of the
object. We have successfully demonstrated segmentation
with multiple algorithms, using a CF tee as an example.
However, for the global registration with the segmented point
cloud, we had tried several popular algorithms, such as Deep
Global Registration [9], and MS-SVConv [10]. However the
results were not sufficiently good to be used in the ICP local
registration algorithm. Further studies are required for this
task.

Examples of the segmentation results and the workflow
of the pose registration are shown in Fig. 3. Our vision algo-
rithms were robust enough to work with various geometries
of SRF/UHV components.
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Figure 3: (a): Image data collection for segmentation NN
training. (b): Manual labeling for the training dataset.
(c): Segmentation done with MaskRCNN. (d): A “Tee” co-
ordinate frame constructed after the global and local (ICP)
registrations. (e): Workflow and accuracy achieved with the
full pose registration.

ROBOTIC ARM SETUP AND CONTROL
After comparing the strength and weakness of more than

five robotic arm manufacturers and their products, we even-
tually selected the Yaskawa Motoman GP series for our
machine automation purposes. For our project, GP8 that
has a maximum payload of 8 kg was sufficient for our proof-
of-principle experiments. Most industrial robotic arms and
their controllers do not ship with the best programming sup-
port, such as an API. As our computer vision algorithms are
developed in Python, for which the API doesn’t exist in the
arm control system, we wrapped the low-level control of the
arm using the Yaskawa Fast Ethernet in Python and created
the API. The API allows one to set local coordinate frames
and control the arm to move along an arbitrarily defined
trajectory in the frames. The computer vision and robotic
arm control programs are seamlessly connected in Python
as an integrated package.

The “destination” frame of an object mounted on or held
by the arm can be defined by a series of transformation
matrices. With the matrices known for both from the object-
in-hand to the eye, and the eye to the destination, the object-
in-hand and object-of-interest can be mated together follow-
ing a planned path. The illustrative coordinate frames and
matrices are shown in Fig. 4.

INTEGRATION OF THE VISION
AND ROBOTIC SYSTEMS

We demonstrated the feasibility of our robotics-based
machine automation and the integration of the two systems
aforementioned by mating two 2.75” CF flanges together.
The two flanges were on a CF Tee, which was the object-of-
interest and mounted on the ArUco plate, and on a CF nipple,
which was the object-in-hand and mounted on the arm. In
the demonstration, we started with an arbitrary robotic arm
pose, took a picture of the object-of-interest with the eye-
in-hand, calculated the destination for the object-in-hand
(a.k.a. the tool) and controlled the arm to move the object-in-

Figure 4: Transformation matrices used in calculating the
coordinate frames for the robotic arm control.

Figure 5: The key poses of the robotic arm during our flange
mating demonstration.

hand. The destination frame was set to be millimeters above
the Tee. The full demonstration was recorded in a video [11],
for which the key screenshots are shown in Fig. 5. Since
the alignment errors could be from multiple sources, the
resultant alignment for each mating trial could be slightly
different. Among the best cases, both the translational and
rotational errors were sufficiently small for dropping the
bolts through the CF holes.

CONCLUSION AND FUTURE WORK
We demonstrated the critical steps of realizing the full

machine automation with our computer vision and robotic
arm systems. The results were extremely promising and laid
the foundation for future work, such as the global registration
with segmented point cloud images, robotic calibration for
accuracy improvement, ICP improvements, and so forth.
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