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Abstract

Large ion beam emittance growth is observed in strong-
strong beam-beam simulations for the Electron-Ion Col-
lider (EIC). As we know, the Particle-In-Cell solver is subject 
to numerical noises. As an alternative approach, an extended 
soft-Gaussian code is developed with help of Hermite poly-
nomials in this paper. The correlation between the horizontal 
and the vertical coordinates of macro-particles is considered. 
The 3rd order center moments are also included in the beam-
beam force. This code could be used as a cross check tool 
of PIC based strong-strong simulation.

INTRODUCTION

The beam-beam interaction is one of the most important 
phenomena to limit the luminosity in colliders. Beam-beam 
simulation is an essential tool to study beam-beam effects. 
Two models are often used in simulations: weak-strong and 
strong-strong. The weak-strong model is used to study the 
single particle dynamics, while the strong-strong model is 
used to study the coherent motion.

The particle-in-cell (PIC) approach is widely used in 
strong-strong simulation. This kind of method is self-
consistent because the electromagnetic field is obtained by 
solving the Poisson equation with the updated charge distri-
bution during beam collisions [1]. However, the PIC based 
strong-strong simulation is subject to numerical noise. The 
discrepancy between the weak-strong and strong-strong sim-
ulation for Electron-Ion Collider (EIC) has been found. It is 
important to understand the difference in case there is some 
coherent mechanism shadowed by the large numerical noise.

The soft-Gaussian model is a possible way to cross-check 
the PIC results. In the soft-Gaussian model, both beams are 
assumed to be an ideal Gaussian distribution during the col-
lision. The second-order moments 𝜎𝑥 and 𝜎𝑦 are calculated 
from macro particles. Although the soft-Gaussian model is 
not self-consistent, the coherent motion is considered during 
the collision.

However, there is a possibility to over-simplify the prob-
lem in the soft-Gaussian model. In this paper, we develop 
a code to extend the soft-Gaussian model. In the extended 
soft-Gaussian model (ESG), the 3rd order moments are also 
taken into account in the calculation of electromagnetic field. 
The ESG would be a better benchmark tool for strong-strong 
simulation.
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INCLUDING BEAM TILT
The beam-beam potential generated by an upright bi-

Gaussian distribution is

𝑈𝑔 = 𝑄1𝑄2𝑁𝑟0
𝛾0
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where 𝑁 is the total particle number, 𝑟0 = 𝑒2/(4𝜋𝜖0𝑚𝑐2) the
classical radius, 𝛾0 the relativistic factor of the test particle,
𝑄1,2 the charge numbers of particles from two colliding
bunches, and 𝜎𝑥,𝑦 are the RMS beam sizes at the collision
point.

The deflection angle from the above bi-Gaussian beam
can be obtained from the well-known Bassetti-Erskine for-
mula [2],
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where 𝑈𝑥,𝑦 is the abbreviation of the derivative 𝜕𝑈𝑔/𝜕𝑦 or
𝜕𝑈𝑔/𝜕𝑥, 𝑥, 𝑦 the coordinates of the test particle, and 𝑤(𝑧) is
the Faddeeva function,

𝑤(𝑧) ≡ exp (−𝑧2) (1 + 2i
√𝜋

∫
𝑧

0
d𝑡 e𝑡2) (3)

In the long term tracking, both beams may tilt slowly in the
𝑥−𝑦 planes because of the nonlinear coupling of beam-beam
force. As a result, the non-zero 𝜎𝑥𝑦 should be considered
for more accurate calculation.

A general 2D Gaussian distribution can be described by
its Σ matrix,

Σ = [𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎𝑦𝑦

] (4)

𝜙𝑔 (𝑥, 𝑦) = 1

2𝜋√det Σ
exp [−1

2 (𝑥, 𝑦) Σ−1 (𝑥
𝑦)] , (5)

where 𝜙𝑔(𝑥, 𝑦) is the 2D distribution in (𝑥, 𝑦) plane. To use
the Bassetti-Erskine formula Eq. (2), we can apply a rotation
on the coordinates (𝑥, 𝑦),

𝐴 = [ cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃] , [𝑥

𝑦] = 𝐴 [𝑥
𝑦] , (6)
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so that the Σ matrix in the rotated frame is diagonal:

[ 𝜎𝑦𝑦 −𝜎𝑥𝑦
−𝜎𝑥𝑦 𝜎𝑥𝑥

] = 𝐴T [𝜎𝑦𝑦 0
0 𝜎𝑥𝑥

] 𝐴 , (7)

where the overline denotes the variable in the rotated frame.
A possible solution is:

cos 2𝜃 =
𝜎𝑥𝑥 − 𝜎𝑦𝑦
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𝑥𝑦

(8)
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Rotating back to the original 𝑥 − 𝑦 frame, the deflection
angle by beam-beam interaction is:

[𝑈𝑥
𝑈𝑦

] = 𝐴−1 [𝑈𝑥
𝑈𝑦

] , (12)

where 𝑈𝑥,𝑦 is calculated from Eq. (2) with substitution of
𝑥, 𝑦, 𝜎𝑥,𝑦.

INCLUDING THIRD-ORDER MOMENTS
After the frame is tilted, we can further extend the model

to include higher order moments with the help of Hermite
polynomial [3],

𝜙 (𝑥, 𝑦) = 𝑎𝑖𝑗𝐻𝑖 (𝑥/𝜎𝑥) 𝐻𝑗 (𝑦/𝜎𝑦) 𝜙𝑔(𝑥, 𝑦) (13)

where the repeated indices mean summation, 𝜙𝑔 (𝑥, 𝑦) the
standard bi-Gaussian kernel as shown in Eq. (5). The Her-
mite polynomial is defined as

𝐻𝑛(𝑥) = (−1)𝑛exp (𝑥2

2 ) d𝑛

d𝑥𝑛 exp (−𝑥2

2 ) . (14)

Because of the orthogonality,

∫
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and the coefficient is determined by
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(16)

where the angle bracket means taking the average over 
all macro particles in simulation. Then the corresponding 
beam-beam potential is given by:

𝑈 = (−1)𝑚+𝑛𝑎𝑚𝑛𝜎𝑚
𝑥 𝜎𝑛

𝑦
𝜕𝑚

𝜕𝑥𝑚
𝜕𝑛

𝜕𝑦𝑛 𝑈𝑔 . (17)

To save computation time, we only extend the model to
include the third-order moments. In the rotated frame, the
first two orders are corrected zero,

𝑎00 = 1, 𝑎10 = 𝑎01 = 𝑎20 = 𝑎11 = 𝑎02 = 0
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𝜎3
𝑥

⟩ , 𝑎21 = 1
2 ⟨ 𝑥2𝑦

𝜎2
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⟩

𝑎03 = 1
2 ⟨ 𝑥𝑦2

𝜎𝑥𝜎2
𝑦

⟩ , 𝑎03 = 1
6 ⟨ 𝑦3

𝜎3
𝑦
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(18)

Up to third order, the beam-beam potential is

𝑈 = 𝑈𝑔 − 𝑎30𝜎3
𝑥𝑈𝑥𝑥𝑥 − 𝑎21𝜎2

𝑥𝜎𝑦𝑈𝑥𝑥𝑦

− 𝑎12𝜎𝑥𝜎2
𝑦𝑈𝑥𝑦𝑦 − 𝑎03𝜎3

𝑦𝑈𝑦𝑦𝑦
(19)

where 𝑈𝑥𝑥𝑥, 𝑈𝑥𝑥𝑦, 𝑈𝑥𝑦𝑦, 𝑈𝑦𝑦𝑦 on the right hand are the partial
derivatives of 𝑈𝑔. The analytic expression can be found
in [4].

In our code, there are 20 terms of third order moments
calculated at the IP. Assuming the drift length between the
collision point and the IP is 𝐿, the moments at collision point
are:

< 𝑥3 > =< 𝑥3
0 > +3 < 𝑥2

0𝑝𝑥0 > 𝐿 + 3 < 𝑥0𝑝2
𝑥0 > 𝐿2

+ < 𝑝3
𝑥0 > 𝐿3

< 𝑥2𝑦 > =< 𝑥2
0𝑦0 > + < 𝑥2

0𝑝𝑦0 > 𝐿 + 2 < 𝑥0𝑝𝑥0𝑦0 > 𝐿
+ 2 < 𝑥0𝑝𝑥0𝑝𝑦0 > 𝐿2+ < 𝑝2

𝑥0𝑦0 > 𝐿2

+ < 𝑝2
𝑥0𝑝𝑦0 > 𝐿3

< 𝑥𝑦2 > =< 𝑥0𝑦2
0 > +2 < 𝑥0𝑦0𝑝𝑦0 > 𝐿+ < 𝑥0𝑝2

𝑦0 > 𝐿2

+ < 𝑝𝑥0𝑦2
0 > +2 < 𝑝𝑥0𝑦0𝑝𝑦0 > 𝐿2

+ < 𝑝𝑥0𝑝2
𝑦0 > 𝐿3

< 𝑦3 > =< 𝑦3
0 > +3 < 𝑦2

0𝑝𝑦0 > 𝐿 + 3 < 𝑦0𝑝2
𝑦0 > 𝐿2

+ < 𝑝3
𝑦0 > 𝐿3 ,

(20)
where the subscript “0” means the average is calculated at
the IP.

In principle, we can extend this method to higher orders.
However, the computation time increases significantly for
higher orders. The truncation error is also intolerable. There-
fore, we only preserve third-order moments in our code.
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Table 1: Flat Beam Parameters in the EIC CDR
Quantity unit proton electron

Crossing angle mrad 25
Beam energy GeV 275 10
Bunch intensity 1011 0.668 1.72
𝛽∗ at IP cm 80/7.2 55/5.6
Beam sizes at IP μm 95/8.5
Bunch length cm 6 2
Transverse tunes 0.228/0.210 0.08/0.06
Longitudinal tune 0.01 0.069

Figure 1: Strong-strong simulation by PIC code Beam-
Beam3D [6] and self-written soft-Gaussian code. The
growth rate is linearly fitted from the last 60% tracking data.

APPLICATION TO EIC
Table 1 lists the beam parameters as presented in the

EIC CDR [5]. Figure 1 compares the tracking results by
PIC based strong-strong code BeamBeam3D [6] and self-
written soft-Gaussian code. The equilibrium electron sizes
are different in both codes because the soft-Gaussian is not
self-consistent. Compared with BeamBeam3D, the soft-
Gaussian code is less noisy. Figure 2 shows the proton
size evolution by extended soft-Gaussian code. We can see
that the 3rd order moments contribute to the horizontal and
vertical size growth.

REFERENCES
[1] Y. Cai, “Methods and issues in beam-beam simulation”, SLAC,

Menlo Park, CA, USA, Rep. SLAC-PUB-9024, Feb. 2001.
doi:10.2172/798894

[2] M. Bassetti and G. A. Erskine, “Closed expression for the
electrical field of a two-dimensional Gaussian charge”, CERN,
Geneva, Switzerland, Rep. ISR-TH-80-06, Mar. 1980.

[3] K. Yokoya, “Limitation of the Gaussian approximation in beam-
beam simulations”, Phys. Rev. Spec. Topics-Accel. and Beams,
vol. 3, no. 12, p. 124401, 2000. doi:10.1103/PhysRevSTAB.
3.124401

[4] D. Xu, Y. Hao, Y. Luo, and J. Qiang, “Synchrobetatron reso-
nance of crab crossing scheme with large crossing angle and fi-

Figure 2: Tracking by extended soft-Gaussian code. The
growth rate is linearly fitted from the last 60% tracking data.
The data is averaged per 1000 turns to better show the growth
trend.

nite bunch length”, Phys. Rev. Accel. Beams, vol. 24, p. 041002,
2021. doi:10.1103/PhysRevAccelBeams.24.041002

[5] F. Willeke and J. Beebe-Wang, “Electron-Ion Collider Concep-
tual Design Report 2021”, BNL, Upton, NY, USA, Rep. 
BNL-221006-2021-FORE, Feb. 2021. 
doi:10.2172/1765663

[6] J. Qiang, M. Furman, and R. Ryne, “A Parallel Particle-In-
Cell Model for Beam-Beam Interactions in High Energy Ring 
Colliders”, J. Comp. Phys., vol. 198, p. 278, 2004. 
doi:10. 1016/j.jcp.2004.01.008

5th North American Particle Accel. Conf. NAPAC2022, Albuquerque, NM, USA JACoW Publishing
ISBN: 978-3-95450-232-5 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2022-WEPA83

WEPA83C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

832 01: Colliders


