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ABSTRACT STRUCTURE DESIGN

= Structure Wakefield Acceleration (SWFA) in the terahertz (THz) regime: = Unit cell design of the W-band corrugated waveguide in CST Eigenmode solver
— Aims to provide high-gradient high-efficiency acceleration — High shunt impedance and high gradient
— Enables more compact and cost-effective accelerators |

Unit cell design parameters

= A W-band corrugated waveguide has been designed for a collinear wakefield - Aperture radius (a) 1.016 mm
acceleration experiment at the Argonne Wakefield Accelerator (AWA) Corrugation depth (d) 0.5 mm
— Structure optimized for maximum gradient for the nominal AWA electron bunch 1k Plate thickness 1 (7) 0.254 mm
at 65 MeV || Plate thickness 2 (v) 0.254 mm
= Analytical theory and simulations show good agreement | Frequency (f) 110.2 GHz
— Accelerating gradient of 84.6 MV/m achieved with a 10 nC Gaussian bunch m r/Q 36.5 kQ/m
Group Velocity (vy) 0.261 c
INTRODUCION | | | ) ¢ Nominal AWA bunch charge (g) 10 nC
- Adva_mtages o_f THz structures for SWFA combined with bunch shaping techniques’: Unit cell design — Bunch RMS length (o) 0.5 mm
~ High gradient: vIe Accelerating gradient (E) 85.8 MV/m

* High shunt impedance => Stronger beam interaction
 High frequency structure with short RF pulse => Lower breakdown rate?

= A full structure of 80 cells (plus two end cells) modeled using CST Microwave

— High efficiency: - L flect
* Longitudinal bunch shaping => transformer ratio (acc. gradient over dec. Studio to mmlgﬁec(;i ection | 0-
gradient) past theoretical limit of 2 for symmetric bunches l l

— Compact structure from small transverse size
= Collinear acceleration test planned at Argonne \Wakefield Accelerator (AWA)
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BENCHMARKING WITH THEORY AND OTHER CODES

WAKEFIELD SIMULATIONS

= \Wakefield excitation in the full structure simulated in CST Wakefield solver = 3 types of benchmarking done 400 _
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— #2: CST Eigenmode vs. Wakefield: |
= Electric field plot with peak gradient of 84.6 MV/m on axis, when a 10 nC, * Gradient Calculatec! with unit cell #2: CST Elgenmode #3: CST
0.5 mm Gaussian electron bunch traverses the structure parameters from Eigenmode as vs. Wakefield vs.ECHO1D
" Future study: Gradient improvement with a shaped bunch r - 2gky -2 /2c? 87.5 - ~~ Eigenmode ol [T £ akeniek
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