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Abstract
Fringe field effects in dipoles can give rise
to important linear and nonlinear contribu-
tions. This paper describes how to ex-
tend the classic results of Brown[1] and
the more recent calculations of Hwang
and Lee[2] to Cartesian dipoles with trans-
verse and/or longitudinal gradients. We do
this by 1) introducing a more general defi-
nition of the fringe field that can be applied
to longitudinal gradient dipoles, 2) allow-
ing for quadrupole and/or sextupole con-
tent in the magnet body, and 3) showing
how to employ the resulting fringe maps as
a symplectic transformation of the coordi-
nates. We compare our calculation results
with tracking for longitudinal and trans-
verse gradient dipoles planned for APS-U.

1. FRINGE FIELDS FOR
CARTESIAN DIPOLES

Cartesian dipoles have straight magnetic
poles parallel to the z-axis.
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• Entrance plane at angle θ.

• Hard edge along x.

• Propagation direction is z.

• Multipole components are
defined in xyz coordinates.

• Fringe field is defined by the
transition between 2 regions
of nearly constant but dis-
tinct multipole content.
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The dimensionless magnetic vector poten-
tial a = eA/p0 can be written in a gauge
with vertical componennt Ay = 0 as
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The dimensionless, on-axis dipole and
quadrupole field profiles are related to the
generalized gradient representation[3] via
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• The hard edge model uses step func-
tions to match the integrated bending
field.
• The hard edge location zedge is set by∫ z+

z−
dz By(0, 0, z) =

∫ z+

z−
dz C1(z)

= (z+ − zedge)Π1(z+) + (zedge − z−)Π1(z−),

Π1 = C1(z+)Θ(z − zedge) + C1(z−)Θ(zedge − z).

• The difference between the actual on-
axis By and the hard edge model de-
fines the dipole fringe field.
•Hard edge models for quadrupole and

sextupole components are defined by
zedge and their maxima/minima at z±.
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Figure 1: On the left is the on-axis field
profile (red) and hard edge model (blue)
at the entrance edge where By starts from
zero at z− and reaches a maximum at z+.
On the right the difference between the
red and blue shows the more complicated
fringe in a longitudinal gradient dipole.

2. DYNAMICS ON THE
FRINGE

Motion in the fringe is governed by the ex-
panded, dimensionless Hamiltonian

H(x,p, δ; z) ≈ (px + ax)2 sec3 θ
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y sec θ
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− δ

+ δ cos θ + (px + ax) tan θ + az.

Fringe field corrections are defined by the
difference of H and the hard edge
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Our perturbation theory proceeds as
1. Define B0(z|z−) to be the unperturbed

map associated H0 from z−→ z.
2. The map M for H0 +H1 can be written

using the “reverse factorization” [4]:

M = B1(z|z−)B0(z|z−),

where B1 accounts for H1 such that

− d

dz
B1 = B1

(
B0 :H1: B−1

0

)
= B1 :Hint

1 : .

3. The fringe field map F obtains by sand-
wiching the full dipole field map M be-
tween unperturbed dipole maps B0 to
and from the edge:

F = B0(z−|0)MB0(0|z+)

= B0(z−|0)B1(z+|z−)B0(0|z−).

4. The fringe field map at the hard edge
can then be written using the Magnus
operator F = e :ΩM : with Lie generator
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1 (z|0)

+
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z∫
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1 (z|0) + . . .

5. The fringe field correction at the hard
edge for, e.g., the vertical coordinate, is
then ∆y = (e :ΩM : − 1)y0.
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Figure 2: Schematic of the fringe field
map composite parts including the map to
outside the fringe region (in red), through
the fringe field (black), and back to the
hard edge (violet). Panel (a) depicts the
map for a dipole entrance, while (b) shows
the case where the bending field transi-
tions between two non-zero regions distin-
guished by yellow and green coloring.

The resulting fringe field maps include
hard edge generalizations of [1] such as
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and new quadrupole corrections including
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where the qudrupole fringe field integral

I1 =
2q

g2Kp0

∫ z+
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(
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)
×
{
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3. COMPARISON WITH
TRACKING

•We assume the on-axis variation follows
the Enge function 1/(1 + e−z/g) [5].
•We model B using the exact, one-

parameter solutions provided in Ref. [6].
•We use tracking to evaluate the fringe

field map using the following four steps:
1. Initialize coordinates on the hard edge
z = zedge = 0.

2. Drift particles to z = −10g where B ≈ 0.
3. Track particles through exact magnetic

field to z = 10g where B ≈ constant.
4. Back-track the particles to z = 0 using

the ideal B = (p0/q)(1/ρ + Ky,Kx, 0).
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1Figure 3: Fringe ∆x and ∆px vs. initial x0
and px,0 that are scaled such that Eqs. (3)-
(4) predicts lines with slopes ∓1.
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1Figure 4: Fringe ∆y and ∆py vs. initial y0
and py,0 that are scaled such that Eqs. (5)-
(6) predict the lines y = ±x.
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1Figure 5: ∆px corrected by the theory’s
offset pxorbit (red), and by an empirically
found focusing ∝ g3K2x0. The offset is
scaled so Eq. (5) follows y = ±x2 (cyan).
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1Figure 6: ∆py corrected by the theoretical
focusing (red) and by an empirically found
focusing ∝ g3K2y0 (blue). The offset prod-
uct |x0y0|1/2 is scaled such that Eq. (6) pre-
dicts the cyan parabolas y = ±x2.

• APS-U’s AM1 dipole uses 5 magnetic
segments for its longitudinal gradient.
• This leads to 6 fringe field maps.
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Figure 7: (a) The AM1 longitudinal gra-
dient dipole field profile and reference or-
bit. The hard edges of each magnetic seg-
ment are identified with black circles. (b)
Comparison of tracking (red solid lines)
with theory (blue dashed lines) for the
fringe field corrections ∆px as a function of
input x0 at each hard edge. The lines are
displaced by the fringe number 0 ≤ f ≤ 5
for clarity. (c) Analogous comparions of
tracking and theory for the vertical focus-
ing ∆py at each edge.

4. elegant[7] TRACKING

•We added the fringe field model to
elegant’s CCBEND element [8].

•We have compared the resulting models
against tracking in the full field.
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1Figure 8: CCBEND’s linear matrix element
predictions for the APS-U Q4 transverse
gradient dipole.

The differences change the lattice tunes,
in good agreement with generalized-
gradient-expansion model (BGGEXP) [9]

Model νx νy
BGGEXP 94.9856 36.0878

CCBEND+Fringe 94.9832 36.0872
CCBEND+No Fringe 95.0038 36.1560

• Theory has also been added to the new
LGBEND (longitudinal gradient bend) el-
ement.

• The fringe integrals for both CCBEND
and LGBEND can be easily evalu-
ated using the companion program
straightDipoleFringeCalc.
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