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Abstract
We analyze the dynamics of multibunch longitudinal instabilities in-
cluding bunch-by-bunch feedback under the assumption that the
synchrotron tune is small. We find that increasing the feedback re-
sponse does not always guarantee stability, even in the ideal case
with no noise. As an example, we show that if the growth rate of
a cavity-driven mode is of the order of the synchrotron frequency,
then there are parameter regions for which the instability cannot
be controlled by feedback irrespective of its gain. We verify these
calculations with tracking simulations relevant to the APS-U, and
find that the dynamics do not depend upon whether the longitudinal
feedback relies on phase-sensing or energy-sensing technology.
Hence, this choice should be dictated by measurement accuracy
and noise considerations.

1. INTRODUCTION
To better understand the feedback performance for the planned
APS-U, we simplify the analysis using the fact that synchrotron tune
is very small . 0.002).

2. FEEDBACK MODELING

•We assume that the longitudinal feedback acts as follws:

1. The pickup measures either the average rf phase 〈ϕ〉 or the
mean energy energy deviation 〈δ〉.

2. The previous N turns of the pickup record is converted into an
energy correction ∆δ using a finite impulse response (FIR) filter.

3. The longitudinal feedback cavity applies energy kick ∆δ.

• The FIR filter coefficients give ∆δ and the damping performance
characterized by the transfer function T (ω):

Kick ∆δ Transfer function T (ω)

Phase detection
based feedback: − 3G
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Energy detection
based feedback: −G
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• Phase detection feedbacks should have zero DC component,∑
Cp = 0, and act as a derivative, T (ω) ∝ iωT0 + O(ω2T 2

0 ).

• Two examples of phase detection FIR filters are

“Usual” differentiator
FIR coefficients:[1]

Cp = −tan(π/N)

3N
sin
[

2π
N (p + 1)

]
Linear regression-based

FIR coefficiants[2]
Cp = −(N − 1)− 2p

N(N2 − 1)

•We consider and energy detection-based scheme that simply
takes the average energy deviation, so that Kp = 1/N .

3. COMPARISON OF PHASE AND
ENERGY DETECTION

The dispersion relation for multi-bunch instability when the wake-
field varies slowly over the bunch length is

• If we assume that the synchtron frequency and multibunch growth
rate are� than the inverse time over which the FIR record is kept:

|Ω|NT0� 1
〈ω〉NT0� 1

⇒ T (Ω) ≈ iωT0

6
for all the FIR filters considered.

• The two phase detection schemes should have similar damping
performance as the energy detection scheme.
•We verified this using tracking for the APS-U.
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Figure 1: Damping performance for longitudinal feedbacks using
a pickup with either energy detection (E-FB) and phase detection
(P-FB) obtained with elegant[3] tracking. (a) and (b) show the
damping of a single cavity HOM for various levels of gain. (c)-(d)
show stable and unstable dynamics when a single bunch is lost for
various HOM configurations.

4. FEEDBACK DYNAMICS
•We investigate the dynamics further by restricting out attention to

an instability driven by a single cavity higher-order mode (HOM).
• The dispersion relation for a single HOM reduces to

1 =

∫
dI 4πF̄ (I)

∞∑
m=1

m2 |zm(I)/σz|2

[Ω/ω(I)]2 −m2

× σt
αcσδ

[
2Λ

i + $

1 + $2
+

6σtG

αcσδT
2
0

T (Ω)

]
,

where, for the HOM shunt impedance Rs quality factor Q, the
maximum growth rate Λ and normalized detuning $ are

Λ =
σtωHOMItotRs

2σδ(γmc
2/e)T0

, $ =
2Q

ωHOM

(ωHOM − pω0 − Ω) .

•Now, we simplify the theory further by assuming

1. Longitudinal rf potential is quadratic in z, so that

2πσδσzF̄ (I) ∝ e−I/σzσδ z±1 = σz
√
I/2σzσδ

2. HOM resonance is much broader than the complex mode fre-
quency and synchrotron frequency, ωHOM/2Q� |Ω| , ωs

3. FIR feedback filter retains a small number of turns such that
both ωsT0 and |ΩT0| are� 1/N

•Under these assumptions the complex frequency satisfies

Ω2 − ω2
s = 2ωsΛ

i + $

1 + $2
− iG

T0
Ω. (1)

•We have two simple limits:

1. Synchrotron frequency much larger than |Ω| and G/T0:

Ω± ≈ ±ωs
(

1 +
Λ

ωs

$

1 + $2

)
− i
(
G

2T0
− Λ

1 + $2

)
. ⇒ Stable if

G > 2ΛT0.

2. Gain is large such that G� ωsT0, |Ω|T0

Ω+ ≈
2ωsΛT0

G(1 + $2)
− iωs

G

(
ωsT0 +

2ΛT0$

1 + $2

)
⇒

Beam is unstable if
−2Λ$ > ωs(1 + $2)

regardless of the
feedback gain G

HOMs detuned by −ωHOM/2Q are unstable when Λ > ωs.
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Figure 2: Regions of multibunch stability as a function of the HOM
detuning $ for a single rf system. Theory predicts that the regions
below the purple, green and blue lines are stable for feedback gains
labelled. The points plot results from elegant simulations that as-
sume G = 0.04 and G = 0.005; the top/right or bottom/left of the
“error bars” indicate parameters where tracking displays unstable
or stable motion, respectively. The yellow cross-hatched region is
predicted to be unstable for any feedback gain G < 1.

5. DYNAMICS IN QUARTIC POTENTIAL

• The APS-U lengthens the bunch with a passive harmonic cavity.

•Our elegant tracking simulations have

1. 48 bunches tracked for 100K turns through the APS-U lattice.
2. Linear and lowest-order nonlinearities of the lattice simulated

using the ILMATRIX element.
3. Synchrotron radiation applied once per turn using the
SREFFECTS element.

4. An RFMODE element to simulate one cavity HOM with frequency
near 921 MHz chosen to exite the m = 29 multibunch mode.
Uses fixed Q = 10.4× 104 and variable Rs and detuning $.

5. Longitudinal feedback applied using paired TFBPICKUP and
TFBDRIVER elements with N = 10 FIR filter.

6. RF cavity parameters tuned such that σt ≈ 52 ps.
• In the previous part we satisfied item 6 above by introducing fic-

tious rf cavities at 39.1 MHz (ωs/2π ≈ 160 Hz).

•Here, we include a passive rf cavity operating at at the 4th har-
monic of the fundamental 352 MHz cavities.
•Quantitatively, the stability region depends upon the specifics of

the longitudinal potential including the short-range impedance Z‖.
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Figure 3: Regions of multibunch stability for a flattened rf poten-
tial. Top: The theory for a flattened potential is indistiguishable from
that in Fig. 2, while the simulation points include the APS-U’s self-
consistent double rf system with two RFMODE elements. The bot-
tom panels plot results for a self-consistent double rf system with
no impedance (purple), with a prescribed harmonic potential using
RFCA elements (red), and with the ring Z‖/8 (blue) or Z‖/4 (green).
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