

Spin polarized electron photoemission and detection studies

Ambar C. Rodríguez Alicea

Luca Cultrera, Brookhaven National Laboratory – Instrumentation Division Oksana Chubenko, Arizona State University Ratnakar Palai, University of Puerto Rico – Rio Piedras Siddharth Karkare, Arizona State University

August 2022

Polarized electron beam for accelerators

LHeC, CERN

EIC, Brookhaven National Laboratory

Production of polarized electrons

 There are three parameters that determine the performance of photocathodes

$$QE = \frac{\# \, electrons}{\# \, photons}$$
, $ESP = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$ and $1/\tau = \ln\left(\frac{QE_o}{QE}\right)/t$

Advances in photocathode fabrication

Production of polarized electrons

 There are three parameters that determine the performance of photocathodes

$$QE = \frac{\# \ electrons}{\# \ photons}$$
, $ESP = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$ and $1/\tau = \ln\left(\frac{QE_o}{QE}\right)/t$

Advances in photocathode fabrication

40 YEARS !!!

3

Negative electron affinity and lifetime

Challenges

- Extreme vacuum sensitivity
 - Deterioration of NEA layers

Negative electron affinity and lifetime

Challenges

- Extreme vacuum sensitivity
 - Deterioration of NEA layers
- Complex layered structure

Ļ	
SL pairs	
and the second second	
1	
DBR	

GaAs	5 nm	p = 5x10 ¹⁹ cm ⁻³
GaAs _{0.62} P _{0.38}	4 nm	p = 5x10 ¹⁷ cm ⁻³
GaAs	4 nm	p = 5x10 ¹⁷ cm ⁻³
GaAs _{0.81} P _{0.19}	300 nm	p = 5x10 ¹⁸ cm ⁻³
AIAs _{0.78} P _{0.22}	65 nm	p = 5x10 ¹⁸ cm ⁻³
GaAs _{0.81} P _{0.19}	55 nm	p = 5x10 ¹⁸ cm ⁻³
GaAs _{0.81} P _{0.19}	2000 nm	p = 5x10 ¹⁸ cm ⁻³
GaAs->GaAs _{0.81} P _{0.19}	2750 nm	p = 5x10 ¹⁸ cm ⁻³
GaAs buffer	200 nm	p = 5x10 ¹⁸ cm ⁻³
GaAs substrate		p > 1x10 ¹⁸ cm ⁻³

85 layers!!!

4

Alternative to GaAs?

ational Laboratory

Method: DFT + Monte Carlo

 Monte Carlo simulation of polarized electron emission from bulk GaAs reproduces experimental results

Symbol	Meaning, units	Value [Ref.]
Band m	odel parameters	
m_r^*	Electron effective mass in Γ valley, m_0	0.063 [29]
m_1^*	Electron effective mass in L valley, m_0	0.22 [10]
m_{Y}^{*}	Electron effective mass in X valley, m_0	0.58 [10]
0T	Non-parabolicity factor for Γ valley, eV^{-1}	0.61 [10]
01	Non-parabolicity factor for L valley, eV^{-1}	0.461 [10]
av	Non-parabolicity factor for X valley, eV^{-1}	0.204 [10]
m*.	hh effective mass. m_0	0.50 [29]
min.	lh effective mass, m_0	0.088 [29]
m*-	so effective mass, mo	0.15 [30]
Ean	Intrinsic band gap energy, eV	1,423 [29]
Δ_{so}	Split-off energy gap, eV	0.332 30
$\Delta_{\Gamma L}$	Energy splitting between minima of Γ and L valleys, eV	0.284 [29]
$\Delta \Gamma Y$	Energy splitting between minima of Γ and X valleys, eV	0.476 [29]
Moment	um relaxation parameters	[
$\Xi_{d\Gamma}$	Acoustic deformation potential for Γ valley, eV	7.01 [10]
Ear.	Acoustic deformation potential for L valley, eV	9.2 [10]
Edx	Acoustic deformation potential for X valley, eV	9.0 [10]
ħωn	Polar optical phonon energy, meV	35,36 [10]
$D_{\Gamma L}$	Deformation potential for $\Gamma \rightarrow L$ scattering, eV Å ⁻¹	10 [10]
Dry	Deformation potential for $\Gamma \to X$ scattering, eV Å ⁻¹	10 [10]
Du	Deformation potential for $L \rightarrow L$ scattering, eV Å ⁻¹	10 [10]
DLY	Deformation potential for $L \to X$ scattering, eV Å ⁻¹	5 [10]
Dyy	Deformation potential for $X \rightarrow X$ scattering $eV \ Å^{-1}$	7 [10]
hum	Intervalley phonon energy for $\Gamma \rightarrow L$ scattering, eV Λ	27.8 [10]
huny	Intervalley phonon energy for $\Gamma \rightarrow X$ scattering, meV	29.9 [10]
harr	Intervalley phonon energy for $L \rightarrow L$ scattering, meV	29 [10]
hurr	Intervalley phonon energy for $L \to X$ scattering, meV	29.3 [10]
havy	Intervalley phonon energy for $X \to X$ scattering meV	29.9 [10]
Zr	Number of equivalent Γ valleys to scatter into	1 [31]
Zi	Number of equivalent L valleys to scatter into	4 [31]
Zx	Number of equivalent X valleys to scatter into	3 [31]
Spin rel	axation parameters	0 [04]
Aan	EY constant for scattering by acoustic phonons	32/27 [21]
Apop	EY constant for scattering by polar optical phonons	32/27 [21]
Aii	EY constant for intervalley scatterings	32/27 [21]
A_{ii}	EY constant for scattering by ionized impurities	32/27 21
$Q_{\rm ap}$	DP constant for scattering by acoustic phonons	1/6 [21]
$Q_{\rm pop}$	DP constant for scattering by polar optical phonons	1/6 [21]
Q_{ij}	DP constant for intervalley scatterings	1/6 [21]
Q_{11}	DP constant for scattering by ionized impurities	1/6 [21]
$\Delta_{\rm exc}$	Exchange splitting of exciton ground state, μeV	47 [22]
$ \psi(0) ^2$	Sommerfeld factor	1 [28]
Other n	aterial parameters	
€∞.	High-frequency dielectric constant, ϵ_0	10.92 [10]
es.	Static dielectric constant, ϵ_0	12.90 [10]
ρ	Crystal density, kg m ⁻³	5360 [10]
v_s	Sound velocity, $m s^{-1}$	5240 [10]
- 0		

Method: DFT + Monte Carlo

Band m	odel parameters		
m_{Γ}^{*}	Electron effective mass in Γ valley, m_0	0.063 [29]	
m_L^*	Electron effective mass in L valley, m_0	0.22 [10]	
m_X^*	Electron effective mass in X valley, m_0	0.58 [10]	
α_{Γ}	Non-parabolicity factor for Γ valley, eV^{-1}	0.61 [10]	
α_L	Non-parabolicity factor for L valley, eV^{-1}	0.461 [10]	
α_X	Non-parabolicity factor for X valley, eV^{-1}	0.204 [10]	
m_{hh}^*	hh effective mass, m_0	0.50 [29]	
m_{lh}^{*}	lh effective mass, m_0	0.088 [29]	
m_{so}^*	so effective mass, m_0	0.15 [<mark>30</mark>]	
E_{g0}	Intrinsic band gap energy, eV	1.423 [29]	
Δ_{so}	Split-off energy gap, eV	0.332 [30]	
$\Delta_{\Gamma L}$	Energy splitting between minima of Γ and L valleys, eV	0.284 [29]	
$\Delta_{\Gamma X}$	Energy splitting between minima of Γ and X valleys, eV	0.476 [29]	
Moment	tum relaxation parameters		
$\Xi_{d\Gamma}$	Acoustic deformation potential for Γ valley, eV	7.01 [10]	
Ξ_{dL}	Acoustic deformation potential for L valley, eV	9.2 [10]	
Ξ_{dX}	Acoustic deformation potential for X valley, eV	9.0 [10]	
$\hbar\omega_0$	Polar optical phonon energy, meV	35.36 [10	
$D_{\Gamma L}$	Deformation potential for $\Gamma \to L$ scattering, eV Å ⁻¹	10 [10]	
$D_{\Gamma X}$	Deformation potential for $\Gamma \to X$ scattering, eV Å ⁻¹	10 [10]	
D_{LL}	Deformation potential for $L \to L$ scattering, eV Å ⁻¹	10 [10]	
D_{LX}	Deformation potential for $L \to X$ scattering, eV Å ⁻¹	5 [10]	
D_{XX}	Deformation potential for $X \to X$ scattering, eV Å ⁻¹	7 [10]	
$\hbar\omega_{\Gamma L}$	Intervalley phonon energy for $\Gamma \to L$ scattering, meV	27.8 [10]	
$\hbar\omega_{\Gamma X}$	Intervalley phonon energy for $\Gamma \to X$ scattering, meV	29.9 10	
$\hbar\omega_{LL}$	Intervalley phonon energy for $L \to L$ scattering, meV	29 [10]	
$\hbar\omega_{LX}$	Intervalley phonon energy for $L \to X$ scattering, meV	29.3 [10]	
$\hbar\omega_{XX}$	Intervalley phonon energy for $X \to X$ scattering, meV	29.9 [10]	
Other material parameters			
ϵ_{∞}	High-frequency dielectric constant, ϵ_0	10.92 [10]	
ϵ_s	Static dielectric constant, ϵ_0	12.90 [10]	

DFT calculations result

Result parameters

Parameter		Obtained	Obtained	Obtained	Reference
		2 K	77 K	300 K	300 K
	CB – X	0.295	0.282	0.283	0.58
	CB – G	0.069	0.068	0.066	0.063
Electron effective	CB – L	0.13	0.13	0.129	0.22
mass (m*)	HH	0.368	0.368	0.374	0.50
	LH	0.08	0.08	0.079	0.088
	SO	0.118	0.117	0.114	0.15
Energy gen (a)()	Intrinsic	1.52	1.51	1.42	1.42
Ellergy gap (ev)	Split-off	0.362	0.361	0.36	0.332
Colitting oppravy (a)()	G – L	0.008	0.024	0.034	0.284
Splitting energy (ev)	G – X	0.315	0.33	0.381	0.476
Non norshalisity	G	0.571	0.574	0.611	0.61
factor (a)/-1)	L	0.498	0.5	0.532	0.461
	Х	0.328	0.341	0.36	0.204
Optical parameters	H.f. dielectric (ϵ_o)	11.40	11.43	11.49	10.92
	Static dielectric (ϵ_o)	11.79	11.82	11.90	12.90
Polar optical phonon energy, meV		35.0	34.9	34.1	35.36
	$\Gamma \rightarrow L$	31.8	31.7	29.7	27.8
Intervalley scattering	$\Gamma \to X$	31.1	30.9	29.7	29.9
phonon energy	$L \rightarrow L$	31.8	31.7	29.7	29
(meV)	$L\toX$	31.5	31.3	29.7	29.3
	$X \to X$	31.8	31.7	29.7	29.9
Crystal density, kg m ⁻³		5640	5632	5605	5360
Sound velocity, m s ⁻¹		5127	5125	5240	5004

Parar	Value	
	$\Gamma \rightarrow L$	10
Deformation potential for	$\Gamma \to X$	10
scattering	$L \rightarrow L$	10
(eV °A ⁻¹)	$L \rightarrow X$	5
	$X \to X$	7
Acoustic deformation potential	L	9.2
(eV)	Х	9.0
· · ·	Г	7.01
lumber of equivalent valleys to scatter	Г	1
	L	4
	Х	3
	scattering by acoustic phonons	32/27
EY constants	scattering by polar optical phonons	32/27
	intervalley scatterings	32/27
	scattering by ionized impurities	32/27
	scattering by acoustic phonons	1/6
DP constants	scattering by polar optical phonons	1/6
	intervalley scatterings	1/6
	scattering by ionized impurities	1/6
Exchange splitting of ex	47	
Sommerf	1	

Monte Carlo Simulation

Simulation of photoemission

- One free parameter fits polarization and QE simultaneously
- Increased in polarization with lowering temperature

10

Simulation of photoemission

- One free parameter fits polarization and QE simultaneously
- Increased in polarization with lowering temperature

Predictions for new materials and structures

Temperature dependence

W. Liu, M. Poelker, X. Peng, S. Zhang, and M. Stutzman, Journal of Applied Physics, vol. 122, p. 035703, 07 2017

Other III-Vs current works

Robust Cs-O-Te NEA activation layer

Superlattice with Distributed Bragg Reflector photocathodes

Details can be found in J. Biswas poster presentation

Acknowledgements

Special thanks to my mentor, Luca Cultrera, for aiding me in understanding the subject and guiding this study, as well as Dr. Palai for his assistance understanding DFT codes and helping with the presentation of the results.

This project was supported in part by the Brookhaven National Laboratory (BNL), Instrumentation Division and the U.S. Department of Energy, Minority Serving Institutions under the Fellowship Program for Research Excellence in Nuclear Physics. The authors also thank the Center for Bright Beams, NSF award PHY-1549132.

Question or comments?

