Next Generation Computational Tools for the Modeling and Design of Particle Accelerators at Exascale

Axel Huebl

Invited Oral - TUYE2 Computing and Data Science for Accelerator Systems

North American Particle Accelerator Conference (NAPAC22)

location: Albuquerque, NM, USA August 9th, 2022

ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISION

CAMPA

On behalf of the BLAST team (lead: Jean-Luc Vay @ LBNL)

LBNL, LLNL, SLAC, CEA, DESY, Modern Electron, CERN

Consortium for Advanced Modeling of Particle Accelerators

Lawrence Berkeley National Laboratory

Funding Support

This research was supported by the **Exascale Computing Project** (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative. This work was supported by the **Laboratory Directed Research and Development Program** of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. This research used resources of the **Oak Ridge Leadership Computing Facility**, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725, the **National Energy Research Scientific Computing Center** (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award ASCR-ERCAP0022112. This work used computational resources of the supercomputer Fugaku provided by **RIKEN** through the HPCI System Research Project (Project ID: ra010013)

- BLAST: Beam pLasma Accelerator Simulation Toolkit
- IO, Standardization & Open Development
- HPC: The Exascale Computing Project and Beyond

Multidisciplinary, Multi-Institutional Contributor Team

Axel Huebl

(LDRD PI)

Kevin

Gott

(NESAP)

contributors

Cho

Ng

a growing list of

Garten

Marco

Ann Almgren John (ECP coPI) Bell

David Grote (ECP coPI)

Marc Hogan (ECP coPI)

Lixin

+

Junmin

Gu

CEA Saclay (France)

Chad

Mitchell

Revathi Jambunathan

Henri

Vincenti

CERN

CERN (Switzerland)

Klion

Luca

Fedeli

Hannah Kumar

Antonin

Sainte-Marie

Lorenzo

Giacomel

Severin

Alexander

DESY (Germany)

Peter Scherpelz, Michael Kieburtz, Kevin Zhu, Roelof E. Groenewald

Phil Miller

 ${\mathcal I}$ ntense Computing

Olga / Shapoval

Edoardo ATAP Zoni

U.S. DEPARTMENT OF

ENERGY

Office of

Science

NNSA

Neïl

Zaim

Weigun

Zhang

AM CRD

Diederichs

Sinn

10

Ultimate goal: offer on-the-fly tunability of physics & numerics complexity to users

Goal Start-to-end modeling in an open software ecosystem.

Start-to-End Modeling R&D

- advanced models: numerics, AI/ML surrogates
- speed & scalability: team science with computer sci.
- flexibility & reliability: modern software ecosystem

Overview of the Particle-In-Cell code WarpX

Available Particle-in-Cell Loops

• electrostatic & electromagnetic (fully kinetic)

Advanced algorithms

boosted frame, spectral solvers, Galilean frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules

field ionization of atomic levels, Coulomb collisions, QED processes (e.g. pair creation), macroscopic materials

Overview of the Particle-In-Cell code WarpX

Available Particle-in-Cell Loops

• electrostatic & electromagnetic (fully kinetic)

Advanced algorithms

boosted frame, spectral solvers, Galilean frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules

field ionization of atomic levels, Coulomb collisions, QED processes (e.g. pair creation), macroscopic materials

Geometries

 1D3V, 2D3V, 3D3V and RZ (spectral cylindrical)

Cylindrical grid (schematic)

Multi-Node parallelization

- MPI: 3D domain decomposition
- dynamic load balancing

On-Node Parallelization

- GPU: CUDA, HIP and SYCL
- CPU: OpenMP

Scalable, Parallel I/O

- AMReX plotfile and openPMD (HDF5 or ADIOS)
- in situ diagnostics

WarpX supports a growing number of applications

Plasma accelerators (LBNL, DESY, SLAC)

Laser-ion acceleration advanced mechanisms (LBNL)

Microelectronics (LBNL) - ARTEMIS

Plasma mirrors and high-field physics + QED (CEA Saclay/LBNL)

Laser-ion acceleration laser pulse shaping (LLNL)

Magnetic fusion sheaths (LLNL)

Plasma confinement, fusion devices (Zap Energy, Avalanche Energy)

Thermionic converter (Modern Electron)

Pulsars, magnetic reconnection (LBNL)

Last month, we open sourced ImpactX as an early developer preview.

Particle-in-Cell Loop

- electrostatic
 - with space-charge effects (in dev.)
- s-based
 - relative to a reference particle
 - elements: symplectic maps

Fireproof Numerics

based on IMPACT suite of codes, esp. IMPACT-Z and MaryLie

Triple Acceleration Approach

.....

• GPU support

EXASCALE COMPUTING PROJECT

- Adaptive Mesh Refinement (in dev.)
- AI/ML & Data Driven Models (in dev.)

LDRD

20

Last month, we open sourced ImpactX as an early developer preview.

Particle-in-Cell Loop

- electrostatic
 - with space-charge effects (in dev.)
- s-based
 - relative to a reference particle
 - elements: symplectic maps

Fireproof Numerics

based on IMPACT suite of codes, esp. IMPACT-Z and MaryLie

Triple Acceleration Approach

mm

• GPU support

EXASCALE COMPUTING

- Adaptive Mesh Refinement (in dev.)
- AI/ML & Data Driven Models (in dev.)

LDRD

User-Friendly

- single-source C++, full Python control
- fully tested
- fully documented

Multi-Node parallelization

- MPI: 2D/3D domain decomposition
- dynamic load balancing (in dev.)

On-Node Parallelization

- GPU: CUDA, HIP and SYCL
- CPU: OpenMP

Scalable, Parallel I/O (in dev.)

- openPMD
- in situ analysis/visualization

- FODO cell
- magnetic bunch compression chicane
- stationary beam in a const. focusing channel
- Kurth-distr. beam in periodic isotropic focusing channel
- stable FODO cell + short RF (buncher) cavities for longitudinal focusing
- chain of thin multipoles
- nonlin. focusing channel (IOTA nonlin. lens)
- Fermilab IOTA storage ring (linear optics)

- FODO cell
- magnetic bunch compression chicane
- stationary beam in a const. focusing channel
- Kurth-distr. beam in periodic isotropic focusing channel
- stable FODO cell + short RF (buncher) cavities for longitudinal focusing
- chain of thin multipoles
- nonlin. focusing channel (IOTA nonlin. lens)
- Fermilab IOTA storage ring (linear optics)

Berlin-Zeuthen Chicane

- rms-matched 5 GeV electron beam with initial normalized transverse rms emittance of 1 μm
- LCLS (@5GeV) & TESLA XFEL (@500MeV)-like

- longitudinal phase space: 10x compression
- emittance coupling: recovered at exit

- FODO cell
- magnetic bunch compression chicane
- stationary beam in a const. focusing channel
- Kurth-distr. beam in periodic isotropic focusing channel
- stable FODO cell + short RF (buncher) cavities for longitudinal focusing
- chain of thin multipoles
- nonlin. focusing channel (IOTA nonlin. lens)
- Fermilab IOTA storage ring (linear optics)

FODO Cell

- stable FODO lattice with a zero-current phase advance of 67.8 degrees per cell
- rms-matched 2 GeV electron beam with initial unnormalized rms emittance of 2 nm
 - test also checks if emittance stays flat

i from impactx import ImpactX, RefPart, \ 23 distribution, elements 24 = ImpactX() # simulation object 25 4 sim 26 6 # set numerical parameters and IO control 27 n sim.set_particle_shape(2) # B-spline order 28 sim.set_slice_step_diagnostics(True) 29 9 sim.set_space_charge(False) 30 31 11 # domain decomposition & space charge mesh 12 sim.init_grids() 33 34 load a 2 GeV electron beam with an initial 15 # unnormalized rms emittance of 2 nm 16 energy MeV = 2.0e3 # reference energy 17 charge C = 1.0e-9 # used with space charge 18 mass_MeV = 0.510998950 # mass 19 qm_qeeV = -1.0e-6/mass_MeV # charge/mass 20 npart = 10000 # number of macro particles 42

> Same Script CPU/GPU & MPI

> > DRD

22 distr = distribution.Waterbag(sigmaX = 3.9984884770e-5, sigmaY = 3.9984884770e-5, sigmaT = 1.0e-3, sigmaPx = 2.6623538760e-5, sigmaPy = 2.6623538760e-5, sigmaPt = 2.0e-3, muxpx = -0.846574929020762, muypy = 0.846574929020762, mutpt = 0.0) 32 sim.add_particles(qm_qeeV, charge_C, distr, npart) 35 # set the energy in the reference particle 36 sim.particle_container().ref_particle() \ .set energy MeV(energy MeV, mass MeV) 39 # design the accelerator lattice 40 ns = 25 # steps slicing through ds 41 fodo = [elements.Drift(ds=0.25, nslice=ns), elements.Quad(ds=1.0, k=1.0, nslice=ns), 43 elements.Drift(ds=0.5, nslice=ns), 44 elements.Quad(ds=1.0, k=-1.0, nslice=ns), 45 elements.Drift(ds=0.25, nslice=ns) 46 47 48 # assign a fodo segment 49 sim.lattice.extend(fodo) 51 # run simulation s2 sim.evolve()

FODO Cell

- stable FODO lattice with a zero-current phase advance of 67.8 degrees per cell
- rms-matched 2 GeV electron beam with initial unnormalized rms emittance of 2 nm
 - test also checks if emittance stays flat

bare (linear) lattice of the Fermilab IOTA storage ring; an rms-matched proton beam with an unnormalized emittance of 4.5 μ m propagates over a single turn

Reference Orbit

ImpactX: IOTA (v8.4) Lattice Benchmark @2.5 MeV protons

bare (linear) lattice of the Fermilab IOTA storage ring; an rms-matched proton beam with an unnormalized emittance of 4.5 μ m propagates over a single turn

Reference Orbit

Preservation of Second Moments

- nnl. element: conserve invariants of motion
- check emittance preservation
- rms beam size evolution: IMPACT-Z vs ImpactX

Preliminary Performance

- on Perlmutter (NERSC) CPU / GPU
- order-of-magnitude perf. ↗ w/o dyn. LB (yet)

An open interface with the community

Online Documentation: warpx hipace impactx.readthedocs.io

Run WarpX	For a complete list of all ex					
Input Parameters	Examples/ directory. It co					
Python (PICMI)	tested, so they should always					
Examples						
Beam-driven electron acceleration	Beam-driven ele					
Laser-driven electron acceleration						
Plasma mirror	AMIREX Inputs :					
Laser-ion acceleration	• 📥 2D case					
Uniform plasma	• 📥 2D case in boosted t					
Capacitive discharge	• 📥 3D case in boosted t					

ample input files, have a look at our ntains folders and subfolders with selfcan try. All these input files are automatically ays be up-to-date.

ectron acceleration

- rame
- rame

Open-Source Development & Benchmarks: github.com/ECP-WarpX

0	All checks have passed 24 successful and 1 neutral checks		
~	🗑 🎽 macOS / AppleClang (pull_request) Successful in 40m	Required	Details
~	🕞 🔠 Windows / MSVC C++17 w/o MPI (pull_request) Successful in 58m		Details
~	CUDA / NVCC 11.0.2 SP (pull_request) Successful in 31m	Required	Details
~	A HIP / HIP 3D SP (pull_request) Successful in 29m		Details
~	Intel / oneAPI DPC++ SP (pull_request) Successful in 38m		Details
7	OpenMP / Clana pywarpx (pull request) Successful in 37m	Required	Details

188 physics benchmarks run on every code change of WarpX 8 physics benchmarks + 32 tests for ImpactX

An open interface with the community

Online Documentation: warpx hipace impactx.readthedocs.io

Run WarpX	For a complete list of all example input f						
Input Parameters	Examples/ directory. It contains folders						
	describing names that you can try. All th						
Python (PICMI)	tested, so they should always be up-to-o						
Examples							
Beam-driven electron acceleration	Beam-driven electron ac						
Laser-driven electron acceleration							
Plasma mirror	AMIREA TIPULS .						
Laser-ion acceleration	• 🛓 2D case						
Uniform plasma	 Lase in boosted frame 						
Capacitive discharge	• 🛓 3D case in boosted frame						

files, have a look at our and subfolders with selfese input files are automatically date.

celeration

Rapid and easy installation on any platform:

LDRD

python3 -m pip install.

brew tap ecp-warpx/warpx brew install warpx

conda install -c conda-forge warpx

spack install warpx spack install py-warpx

module load warpx module load py-warpx

Open-Source Development & Benchmarks: github.com/ECP-WarpX

0	All checks have passed 24 successful and 1 neutral checks		
~	🗑 🎽 macOS / AppleClang (pull_request) Successful in 40m	Required	Details
~	🗑 🔠 Windows / MSVC C++17 w/o MPI (pull_request) Successful in 58m		Details
~	CUDA / NVCC 11.0.2 SP (pull_request) Successful in 31m	Required	Details
~	O HIP / HIP 3D SP (pull_request) Successful in 29m		Details
~	Intel / oneAPI DPC++ SP (pull_request) Successful in 38m		Details
7	OpenMP / Clang pywarpx (pull request) Successful in 37m	Required	Details

188 physics benchmarks run on every code change of WarpX 8 physics benchmarks + 32 tests for ImpactX

cmake -S.-B build cmake --build build --target install

Portable Performance through Exascale Programming Model

A. Myers et al., "Porting WarpX to GPU-accelerated platforms," Parallel Computing 108, 102833 (2021)

Portable Performance through Exascale Programming Model

Performance-Portability Layer: GPU/CPU/KNL

GPU			CPU
	without tiling	with tiling	

 Write the code once, specialize at compile-time

ParallelFor(/Scan/Reduce)

<pre>amrex::ParallelFor(n_particles, [=] AMREX GPU DEVICE (long i) {</pre>	
<pre>UpdatePosition(x[i], y[i], z[i],</pre>	
ux[i], uy[i], uz[i], dt);	
<pre>});</pre>	

- Parallel linear solvers

 (e.g. multi-grid Poisson solvers)
- Embedded boundaries

 Runtime parser for user-provided math expressions (incl. GPU)

A. Myers et al., "Porting WarpX to GPU-accelerated platforms," Parallel Computing 108, 102833 (2021)

Structure

Data

Transitioning to an Integrated Ecosystem

Transitioning to an Integrated Ecosystem

mac				
Desktop to	AMReX Containers, Communication, Portability, Utilities		FFT on- or multi- device	Lin. Alg. BLAS++ LAPACK++
	MPI	CUDA, OpenMP	, SYCL,	HIP

Transitioning to an Ir

mac

Desktop

to

HPC

PByte-scale TByte/s Bandwidth

AMReX Containers, Communication, Portability, Utilities

MPI

CUDA, OpenMP, SYCL, HIP

3

Transitioning to an Integrated Ecosystem BLAST BEAM PLASMA & ACCELERATOR SIMULATION TOOLKIT **QED** events e=____ 7 MM **PICSAR ABLASTR library:** common PIC physics mac **QED** Modules OS **Diagnostics** FFT I/OLin. AMReX code coupling Alg. on- or openPMD Asc Containers, Communication, multi-BLAS++ ent Portability, Utilities AD 1516 Desktop LAPACK++ device F5 **S2** VTK to ZFP HPC MPI CUDA, OpenMP, SYCL, HIP

BLASMA & ACCELERATOR SIMULATION TOOLKIT

Transitioning to an Integrated Ecosystem

- BLAST: Beam pLasma Accelerator Simulation Toolkit
- IO, Standardization & Open Development
- HPC: The Exascale Computing Project and Beyond

Start-to-end accelerator modeling requires data compatibility and control usability

Figure 8: Longitudinal electric field (in V/m) in a laser-driven plasma acceleration stage at two times (top: $t \approx 300$ fs, bottom: $t \approx 600$ fs) along the laser propagation from 2-D PIC simulations with (left) Warp; (right) Osiris. Plots are based on rendering from the openPMD-viewer.

Figure 8: Longitudinal electric field (in V/m) in a laser-driven plasma acceleration stage at two times (top: $t \approx 300$ fs, bottom: $t \approx 600$ fs) along the laser propagation from 2-D PIC simulations with (left) Warp; (right) Osiris. Plots are based on rendering from the openPMD-viewer.

- markup / schema for <u>arbitrary</u> hierarchical data formats
- truly, scientifically
 self-describing
- basis for open data workflows

openPMD standard (1.0.0, 1.0.1, 1.1.0)

the underlying file markup and definition A Huebl et al., DOI:10.5281/zenodo.33624

- markup / schema for <u>arbitrary</u> hierarchical data formats
- truly, scientifically
 self-describing
- basis for open data workflows

openPMD standard (1.0.0, 1.0.1, 1.1.0) *the underlying file markup and definition*

A Huebl et al., DOI:10.5281/zenodo.33624

base standard

extensions

general description domain specific wavefronts, particle species, particle beams,weighted particles, PIC, MD, mesh-refinement, CCD images, ...

- markup / schema for <u>arbitrary</u> hierarchical data formats
- truly, scientifically
 self-describing
- basis for open data workflows

openPMD standard (1.0.0, 1.0.1, 1.1.0) *the underlying file markup and definition* A Huebl et al., DOI:10.5281/zenodo.33624

base standard

extensions

general description domain specific wavefronts, particle species, particle beams,weighted particles, PIC, MD, mesh-refinement, CCD images, ...

ADIOS HJF {JSON}

- markup / schema for <u>arbitrary</u> hierarchical data formats
- truly, scientifically
 self-describing
- basis for open data workflows

openPMD standard (1.0.0, 1.0.1, 1.1.0) *the underlying file markup and definition*

A Huebl et al., DOI:10.5281/zenodo.33624

base standard

extensions

general description domain specific wavefronts, particle species, particle beams,weighted particles, PIC, MD, mesh-refinement, CCD images, ...

openPMD-viewer

quick visualization explore, e.g., in Jupyter

SciDAC Stentific Discovery through Advanced Computing

openPMD-api

reference library file-format agnostics API

openPMD-updater

auto-update to new standard, verify openPMD-validator

... and integrate them for scientific productivity

including data analytics frameworks & graphical user interfaces

Calling this method w this notebook online.	ill insert the following pa Calling the slider met	anel in hod ir	nside th n a live i	e no note	otebook. (Note book, will proc	that the pane luce a truly in	terac	ow is ctive p	an non anel.)	-intera	ctive i	mage	, which is here for the	S	0.1	15 -	8		
	- +	t (fs	»								33				0.0	05 -			
	Field type					Partie	cle q	uantii	ies						0.0 S -0.0	00	ties.		
	Field:	d: B E J rh		E J rho	Hydrogen1+ -					-0.1	10	20							
	Coord:	x	y z	z		x	у	z	ux	uy	uz	w			-0.1	15 -	:	9	
	Plotting opti	one				×	у	z	ux	uy	uz	w	None		-0.2	20 . 15	20	25	30
	r lotting opti	Flotting options					cle s	electi	on									2	
	Always refresh	1	Refresh	nov	v!														

... and integrate them for scientific productivity

including data analytics frameworks & graphical user interfaces

<pre>In []: ts_2d.slider()</pre>			Out[4]: [<matplotlib.lines.line2d 0x10832b7f0="" at="">] electrons: t = 987fs (iteration 300)</matplotlib.lines.line2d>	
In []: ts_2d.slider() Calling this method will ins this notebook online. Callin	ert the following panel inside the notebook. (Note the generative method in a live notebook, will produce the slider method in a live notebook, will produce th	at the panel below is an non-interactive image, which is here for the us a truly interactive panel.) 33 Particle quantities Hydrogen1+ x y z ux uy uz w x y z ux uy uz w Particle selection Plotting options	Out[4]: [<matplotlib.lines.line2d 0x10832b7f0="" at="">] electrons: t = 98.7 fs (iteration 300) 0.15 0.00 0.00 0.00</matplotlib.lines.line2d>	Contour Var: Fields/E/x Units: m.kg.s^A.3.AA-1 — 2.159e+10 — 2.159e+10 — 2.159e+10 Max: 6.478e+10 Min: -6.478e+10 Min: -6.478e+10 Min: -6.478e+10 Min: -6.478e+10 Min: -6.478e+10 Min: -6.478e+10 Min: -6.478e+10 Min: -6.478e+11 Min: -4.280e+12 Min: -4.280

... and integrate them for scientific productivity

including data analytics frameworks & graphical user interfaces

<pre>In []: ts 2d.slider()</pre>			<pre>Out[4]: [<matplotlib.lines.line2d 0x10832b7f0="" at="">]</matplotlib.lines.line2d></pre>	
Calling this method will insert the this notebook online. Calling the	he following panel inside the notebook. (Note tha e slider method in a live notebook, will produce	the panel below is an non-interactive image , which is here for the u a truly interactive panel.)	electrons: t = 98.7 fs (iteration 300) le12 0.15 0.10	
-	- + t (fs)	33	0.05 -	MGIT
	Field type	Particle quantities	N 0.00	
	Field: B E J rho	Hydrogen1+ -	-0.10	
	Coord: x y z	x y z ux uy uz w None		Var: Fields/E/x Units: m.kg.s^-3.A^-1
	Plotting options		Z Z Z Z Z Z	-2.1590+10 -2.1590+10 Max: 6.4780+10 Min: 6.4780+10
	Always refresh Refresh now!	Particle selection		Contour Var: Fields/E/y
		Plotting options		-1.485e+12 -1.397e+12
open 🏑				Max: 4.368e+12 Min: -4.280e+12
DMA	NDAS	K ParaV	iew VT	Volume Var: Fields/tho Units: mA-3.s.A — 0.000
				-3750.
				-1.1250+04
	Onen star	dardization i e open	PMD makes us flexible for I/	
		libraries, tooling & do	main-science needs.	48

- BLAST: Beam pLasma Accelerator Simulation Toolkit
- IO, Standardization & Open Development
- HPC: The Exascale Computing Project and Beyond

WarpX: Runs Efficiently on the First Exascale Supercomputer

April-July 2022: ran on **world's largest HPCs** L. Fedeli, A. Huebl et al., *accepted* in SC'22, 2022

Note: Perlmutter & Frontier are pre-acceptance!

Demonstrated scaling 4-5 orders of magnitude

WarpX: Runs Efficiently on the First Exascale Supercomputer

April-July 2022: ran on **world's largest HPCs** L. Fedeli, A. Huebl et al., *accepted* in SC'22, 2022

Note: Perlmutter & Frontier are pre-acceptance!

Demonstrated scaling 4-5 orders of magnitude

WarpX: Runs Efficiently on the First Exascale Supercomputer

April-July 2022: ran on **world's largest HPCs** L. Fedeli, A. Huebl et al., *accepted* in SC'22, 2022

Note: Perlmutter & Frontier are pre-acceptance!

Demonstrated scaling **4-5 orders** of magnitude

Figure-of-Merit over time

Date	Machine	N _c /Node	Nodes	FOM	
3/19	Cori	0.4e7	6625	1.0e11	
6/19	Summit	2.8e7	1 000	7.8e11	
9/19	Summit	2.3e7	2 560	6.8e11	
1/20	Summit	2.3e7	2 560	1.0e12	
2/20	Summit	2.5e7	4 263	1.2e12	
6/20	Summit	2.0e7	4 263	1.4e12	
7/20	Summit	2.0e8	4 263	2.5e12	
3/21	Summit	2.0e8	4 263	2.9e12	×
6/21	Summit	2.0e8	4 263	2.7e12	
7/21	Perlmutter	2.7e8	960	1.1e12	
12/21	Summit	2.0e8	4 263	3.3e12	I
4/22	Perlmutter	4.0e8	928	1.0e12	
4/22	Perlmutter [†]	4.0e8	928	1.4e12	
4/22	Summit	2.0e8	4 263	3.4e12	
4/22	Fugaku [†]	3.1e6	98 304	8.1e12	
6/22	Perlmutter	4.4e8	1 088	1.0e12	
7/22	Fugaku	3.1e6	98 304	2.2e12	
7/22	Fugaku†	3.1e6	152 064	9.3e12	
7/22	Frontier	8.1e8	8 5 7 6	1.1e13	

GPU Computing at Scale Requires Advanced Load Balancing

Application Challenges

- Plasma Mirrors & Laser-Ion
 Acceleration: moving front
- Laser Wakefield Accelerator: Injected Beam Particles

M. Rowan, A. Huebl, K. Gott, R. Lehe, M. Thévenet, J. Deslippe, J.-L. Vay, "In-Situ Assessment of Device-Side Compute Work for Dynamic Load Balancing in a GPU-Accelerated PIC Code," PASC21, DOI:10.1145/3468267.3470614 (2021)

GPU Computing at Scale Requires Advanced Load Balancing

Application Challenges

- Plasma Mirrors & Laser-Ion
 Acceleration: moving front
- Laser Wakefield Accelerator: Injected Beam Particles

Speedup with load balance

In Situ Cost Analysis

- basis for distribution functions
- realistic cost: kernel timing

Result: 3.8x speedup!

- production-quality, easy-to-use
- larger simulation: mitigate local memory spikes

Limit from strong scaling

 2^6

 2^2

2

Number of nodes

Novel Visualization Techniques

Particle Adaptive Sampling

ALPINE: Anscent

- emphasis on "uncommon" properties
- inverse sampling to incidence of a property

A. Biswas et al., "In Situ Data-Driven Adaptive Sampling for Large-scale Simulation Data Summarization," ISAV18 @SC18 (2018)

Biswas, Larsen, Lo

Novel Visualization Techniques

Particle Adaptive Sampling

- emphasis on "uncommon" properties
- inverse sampling to incidence of a property

A. Biswas et al., "In Situ Data-Driven Adaptive Sampling for Large-scale Simulation Data Summarization," ISAV18 @SC18 (2018)

ALPINE: Anscent Biswas, Larsen, Lo

Physics-Informed Flow Tracelines

- traditional flow vis. depends only on *local field values*
- plasma particles:
 - **inert**: track *relativistic momentum* on a traceline \cap
 - **Lorentz-Force**: 6 fields (electromag.), leap-frog Ο
- chance to **significantly reduce particle I/O** in real-life ٠ workflows through savings on temporal fidelity

56

Postdocs Welcome - Come work with us!

jobs.lbl.gov/jobs/search/3151872

- Modeling & Theory
 - Exascale & Wakefields #92244
 - Beam Dynamics & ML #96603
- Experiment
 - Wakefields, kHz-MHz (LPA) #96321 #93729

SciDAC

 Laser-Proton/Ion (LPI) #95498

58

Summary

- BLAST is an open suite of PIC codes for particle accelerator modeling, increasingly build on top of the AMReX library, using code-sharing through the ABLASTR library and leveraging the U.S. DOE Exascale software stack.
 ECP WarpX is our first Exascale app, for relativistic plasma & beam modeling; ImpactX enhances these developments with AI/ML for s-based beam dynamics.
- AMReX for CPU/GPU Mesh-Refinement, ABLASTR shares PIC methods
 - Portable CPU/GPU frameworks that avoid code duplication
 - Efficient data structures, memory & comms.
 - Reuse numerical methods in various PIC loops
- Vibrant Ecosystem and Contributions
 - Runs on any platform: Linux, macOS, Windows
 - Specialized codes & advanced physics modules (QED, collisions, ionization,
 - Advanced computer science research (load-balancing, I/O, visualization, ...)
 - Public development, automated testing, review & documentation
 - Friendly, open & helpful community

presented by: Axel Huebl (LBNL)