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▪ BLAST: Beam pLasma 
Accelerator Simulation Toolkit

▪ IO, Standardization & Open 
Development

▪ HPC: The Exascale Computing 
Project and Beyond
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Simulation of Beam Sources & Dynamics Requires Different Types of PIC Codes

Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

BoosterSource Injector

Storage Ring

Injector

Storage RingIP IP

Goal
Start-to-end model-
ing in an open 
software ecosystem.
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Simulation of Beam Sources & Dynamics Requires Different Types of PIC Codes

Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

BoosterSource Injector

(S)RF Gun LPA/LPI

IP

Goal
Start-to-end model-
ing in an open 
software ecosystem.

A laser-wakefield stage

t-based electrostatic 
or electromagnetic PIC

3D visualization of the plasma proton density during the 
acceleration process of a few-fs, 1.15nC beam
Hilz, Ostermayr, Huebl et al.; Nat. Comm. 9.432, 2018
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Simulation of Beam Sources & Dynamics Requires Different Types of PIC Codes

Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

t-based electrostatic 
or electromagnetic PIC

Quasistatic PIC
separates the timescale
for plasma wakefield 
and beam evolution

BoosterSource Injector

(S)RF Gun LPA/LPI

IP IP

Goal
Start-to-end model-
ing in an open 
software ecosystem.

A laser-wakefield stage

3D visualization of the plasma proton density during the 
acceleration process of a few-fs, 1.15nC beam
Hilz, Ostermayr, Huebl et al.; Nat. Comm. 9.432, 2018
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Simulation of Beam Sources & Dynamics Requires Different Types of PIC Codes

Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

Quasistatic PIC
separates the timescale
for plasma wakefield 
and beam evolution
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Simulation of Beam Sources & Dynamics Requires Different Types of PIC Codes

Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

Quasistatic PIC
separates the timescale
for plasma wakefield 
and beam evolution

BoosterSource Injector

Injector

Plasma Stage(S)RF Gun LPA/LPI

Goal
Start-to-end model-
ing in an open 
software ecosystem.

Plasma Stage

t-based electrostatic 
or electromagnetic PIC

Left: Laser-driven wakefield accelerator (LWFA) stage with the 
drive laser propagating to the right shown in red; right: plasma 
wakefield accelerator (PWFA) driven by the electron beam from 
the LWFA stage (figure credits: Thomas Heinemann/Strathclyde 
and Alberto Martinez de la Ossa/DESY).
T. Kurz, T. Heinemann, et al. Nat. Comm. 12.2895 (2021)
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Simulation of Beam Sources & Dynamics Requires Different Types of PIC Codes

Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

Quasistatic PIC
separates the timescale
for plasma wakefield 
and beam evolution

Source Injector

Storage Ring

Injector

(S)RF Gun LPA/LPI

Storage RingIP IP

Goal
Start-to-end model-
ing in an open 
software ecosystem.

t-based electrostatic 
or electromagnetic PIC

Booster

Plasma Stage Plasma Stage
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uses s instead of t as
independent variable
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accelerator elements

Quasistatic PIC
separates the timescale
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and beam evolution
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Storage Ring
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independent variable
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Storage Ring
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Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

Quasistatic PIC
separates the timescale
for plasma wakefield 
and beam evolution

WarpX

HiPACE++

ImpactX
BoosterSource Injector

Storage Ring

FEL

Legend

BLAST: 
Exascale

modeling of radiative & 
space-charge effects

buildup of electron clouds, 
secondary electron yield

Injector

Plasma Stage(S)RF Gun LPA/LPI

Storage RingIP IP

cooling
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Simulation of Beam Sources & Dynamics Requires Different Types of PIC Codes

Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

Quasistatic PIC
separates the timescale
for plasma wakefield 
and beam evolution

WarpX

HiPACE++

ImpactX
BoosterSource Injector

Storage Ring
Beam
Beam

3D

ES or
Vlasov FEL

IMPACT-T

Legend

BLAST: 
Exascale

in BLAST

LW3D modeling of radiative & 
space-charge effects

POSINST buildup of electron clouds, 
secondary electron yield

other

Injector

Plasma Stage(S)RF Gun LPA/LPI

Storage RingIP IP

IMPACT-Z

cooling

Goal
Start-to-end model-
ing in an open 
software ecosystem.

Plasma Stage

t-based electrostatic 
or electromagnetic PIC



Reduced 
physics

Full 
physics

1D-1V 3D-3V

Low 
resolution

High 
resolution

Surrogate 
models

First 
principles

Great for 
ensemble 

runs for 
design 
studies

Great for 
detailed 
runs for 
physics 
studies

Ultimate goal: offer on-the-fly tunability of physics & numerics 
complexity to users

Goal
Start-to-end model-
ing in an open 
software ecosystem.

Start-to-End Modeling R&D
● advanced models: numerics, AI/ML surrogates
● speed & scalability: team science with computer sci.
● flexibility & reliability: modern software ecosystem
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Available Particle-in-Cell Loops
● electrostatic & electromagnetic (fully kinetic)

Overview of the Particle-In-Cell code WarpX

Push particles

Deposit 
currents

Solve fields

Gather fields

 

 

 

 

Advanced algorithms
boosted frame, spectral solvers, Galilean 
frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules
field ionization of atomic levels, Coulomb
collisions, QED processes (e.g. pair creation), 
macroscopic materials
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Available Particle-in-Cell Loops
● electrostatic & electromagnetic (fully kinetic)

Overview of the Particle-In-Cell code WarpX

Push particles

Deposit 
currents

Solve fields

Gather fields

 

 

 

 

Geometries
• 1D3V, 2D3V,

3D3V and
RZ (spectral
cylindrical)

Multi-Node parallelization
• MPI: 3D domain decomposition
• dynamic load balancing

On-Node Parallelization
• GPU: CUDA, HIP and SYCL
• CPU: OpenMP

Scalable, Parallel I/O
• AMReX plotfile and

openPMD (HDF5 or ADIOS)
• in situ diagnostics

Advanced algorithms
boosted frame, spectral solvers, Galilean 
frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules
field ionization of atomic levels, Coulomb
collisions, QED processes (e.g. pair creation), 
macroscopic materials
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 WarpX supports a growing number of applications

Plasma 
accelerators
(LBNL, DESY, 
SLAC)

Laser-ion acceleration -  
advanced mechanisms (LBNL)

Plasma mirrors and high-field 
physics + QED (CEA Saclay/LBNL)

Laser-ion 
acceleration - 
laser pulse 
shaping (LLNL)

Pulsars, magnetic
reconnection (LBNL)

Plasma confinement,
fusion devices
(Zap Energy, 
Avalanche Energy)

Magnetic fusion sheaths (LLNL)

Microelectronics (LBNL) - ARTEMIS

Thermionic converter
(Modern Electron)



20  

Last month, we open sourced ImpactX as an 
early developer preview.

Particle-in-Cell Loop
● electrostatic

○ with space-charge effects (in dev.)
● s-based

○ relative to a reference particle
○ elements: symplectic maps

ImpactX: GPU-, AMR- & AI/ML-Accelerated Beam Dynamics

Fireproof Numerics
based on IMPACT suite of codes, esp. 
IMPACT-Z and MaryLie

Triple Acceleration Approach
• GPU support
• Adaptive Mesh Refinement (in dev.)
• AI/ML & Data Driven Models (in dev.)

github.com/ECP-WarpX/impactx
LDRD
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Last month, we open sourced ImpactX as an 
early developer preview.

Particle-in-Cell Loop
● electrostatic

○ with space-charge effects (in dev.)
● s-based

○ relative to a reference particle
○ elements: symplectic maps

ImpactX: GPU-, AMR- & AI/ML-Accelerated Beam Dynamics

User-Friendly
• single-source C++, full Python control
• fully tested
• fully documented

Multi-Node parallelization
• MPI: 2D/3D domain decomposition
• dynamic load balancing (in dev.)

On-Node Parallelization
• GPU: CUDA, HIP and SYCL
• CPU: OpenMP

Scalable, Parallel I/O (in dev.)
• openPMD
• in situ analysis/visualization

Fireproof Numerics
based on IMPACT suite of codes, esp. 
IMPACT-Z and MaryLie

Triple Acceleration Approach
• GPU support
• Adaptive Mesh Refinement (in dev.)
• AI/ML & Data Driven Models (in dev.)

github.com/ECP-WarpX/impactx
LDRD
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ImpactX: Physics Benchmark Examples

● FODO cell
● magnetic bunch compression chicane
● stationary beam in a const. focusing channel
● Kurth-distr. beam in periodic isotropic 

focusing channel
● stable FODO cell + short RF (buncher) 

cavities for longitudinal focusing
● chain of thin multipoles
● nonlin. focusing channel (IOTA nonlin. lens)
● Fermilab IOTA storage ring (linear optics)

LDRD
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ImpactX: Physics Benchmark Examples

Berlin-Zeuthen Chicane
• rms-matched 5 GeV electron beam with initial 

normalized transverse rms emittance of 1 μm
• LCLS (@5GeV) & TESLA XFEL (@500MeV)-like

• longitudinal phase space: 10x compression
• emittance coupling: recovered at exit

● FODO cell
● magnetic bunch compression chicane
● stationary beam in a const. focusing channel
● Kurth-distr. beam in periodic isotropic 

focusing channel
● stable FODO cell + short RF (buncher) 

cavities for longitudinal focusing
● chain of thin multipoles
● nonlin. focusing channel (IOTA nonlin. lens)
● Fermilab IOTA storage ring (linear optics)

LDRD
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● FODO cell
● magnetic bunch compression chicane
● stationary beam in a const. focusing channel
● Kurth-distr. beam in periodic isotropic 

focusing channel
● stable FODO cell + short RF (buncher) 

cavities for longitudinal focusing
● chain of thin multipoles
● nonlin. focusing channel (IOTA nonlin. lens)
● Fermilab IOTA storage ring (linear optics)

ImpactX: Physics Benchmark Examples

FODO Cell
• stable FODO lattice with a zero-current phase 

advance of 67.8 degrees per cell
• rms-matched 2 GeV electron beam with initial 

unnormalized rms emittance of 2 nm
○ test also checks if emittance stays flat

LDRD
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ImpactX: Physics Benchmark Examples

💡 Same Script
CPU/GPU & MPI

FODO Cell
• stable FODO lattice with a zero-current phase 

advance of 67.8 degrees per cell
• rms-matched 2 GeV electron beam with initial 

unnormalized rms emittance of 2 nm
○ test also checks if emittance stays flat

LDRD
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bare (linear) lattice of the Fermilab IOTA storage 
ring; an rms-matched proton beam with an un- 
normalized emittance of 4.5 μm propagates 
over a single turn

ImpactX: IOTA (v8.4) Lattice Benchmark @2.5 MeV protons

Reference Orbit

LDRD
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bare (linear) lattice of the Fermilab IOTA storage 
ring; an rms-matched proton beam with an un- 
normalized emittance of 4.5 μm propagates 
over a single turn

ImpactX: IOTA (v8.4) Lattice Benchmark @2.5 MeV protons

Preservation of Second Moments
• nnl. element: conserve invariants of motion
• check emittance preservation
• rms beam size evolution:

IMPACT-Z vs ImpactX

Preliminary Performance
• on Perlmutter (NERSC) CPU / GPU
• order-of-magnitude perf.↗ w/o dyn. LB (yet)Reference Orbit

LDRD
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An open interface with the community

Open-Source Development & Benchmarks:
github.com/ECP-WarpX

Online Documentation:
warpx|hipace|impactx.readthedocs.io

188 physics benchmarks run on every code change of WarpX
8 physics benchmarks + 32 tests for ImpactX
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An open interface with the community

python3 -m pip install .
brew tap ecp-warpx/warpx
brew install warpx

spack install warpx
spack install py-warpx

conda install
        -c conda-forge warpx module load warpx

module load py-warpx

cmake -S . -B build
cmake --build build --target install

Open-Source Development & Benchmarks:
github.com/ECP-WarpX

Online Documentation:
warpx|hipace|impactx.readthedocs.io

Rapid and easy installation on any platform: 188 physics benchmarks run on every code change of WarpX
8 physics benchmarks + 32 tests for ImpactX

LDRD
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Portable Performance through Exascale Programming Model

A. Myers et al., “Porting WarpX to GPU-accelerated platforms,” Parallel Computing 108, 102833 (2021)

AMReX library

▪ Domain decomposition & MPI
communications: MR & load balance

▪ Performance-Portability Layer: GPU/CPU/KNL

without tiling with tiling D
at

a 
St

ru
ct

ur
es
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Portable Performance through Exascale Programming Model

A. Myers et al., “Porting WarpX to GPU-accelerated platforms,” Parallel Computing 108, 102833 (2021)

AMReX library

▪ Domain decomposition & MPI
communications: MR & load balance

▪ Performance-Portability Layer: GPU/CPU/KNL

without tiling with tiling D
at

a 
St

ru
ct

ur
es

▪ Write the code once, specialize at
compile-time

ParallelFor(/Scan/Reduce)

▪ Parallel linear solvers
(e.g. multi-grid Poisson solvers)

▪ Embedded
boundaries

▪ Runtime parser for user-provided 
math expressions (incl. GPU)
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Transitioning to an Integrated Ecosystem

MPI CUDA, OpenMP, SYCL, HIP

Desktop
to

HPC
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Transitioning to an Integrated Ecosystem

AMReX

Containers, Communication,
Portability, Utilities

MPI CUDA, OpenMP, SYCL, HIP

Lin.
Alg.

BLAS++
LAPACK++

FFT

on- or 
multi- 
deviceDesktop

to
HPC
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Transitioning to an Integrated Ecosystem

AMReX

Containers, Communication,
Portability, Utilities

MPI CUDA, OpenMP, SYCL, HIP

Diagnostics
I/O

code coupling

ADIO
S2

HD
F5

Lin.
Alg.

BLAS++
LAPACK++

Asc
ent.

.

.
ZFP

VTK
-m

openPMD

FFT

on- or 
multi- 
deviceDesktop

to
HPC

3.7 TB         7.5 TB       15.1 TB        30.2 TB         60 TB           120 TB         240 TB

● PByte-scale
● TByte/s Bandwidth
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Transitioning to an Integrated Ecosystem

AMReX

Containers, Communication,
Portability, Utilities

MPI CUDA, OpenMP, SYCL, HIP

Diagnostics
I/O

code coupling

ADIO
S2

HD
F5

Lin.
Alg.

BLAS++
LAPACK++

Asc
ent.

.

.
ZFP

VTK
-m

openPMD

PICSAR
QED Modules

FFT

on- or 
multi- 
device

ABLASTR library: common PIC physics

Desktop
to

HPC
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Transitioning to an Integrated Ecosystem

WarpX
full PIC, LPA/LPI

AMReX

Containers, Communication,
Portability, Utilities

MPI CUDA, OpenMP, SYCL, HIP

Diagnostics
I/O

code coupling

ADIO
S2

HD
F5

Lin.
Alg.

BLAS++
LAPACK++

Asc
ent.

.

.
ZFP

VTK
-m

openPMD

PICSAR
QED Modules

FFT

on- or 
multi- 
device

ABLASTR library: common PIC physics

ARTEMIS
microelectronics

ImpactX
accelerator 

lattice design

Desktop
to

HPC

HiPACE++
quasi-static, PWFA
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Transitioning to an Integrated Ecosystem

WarpX
full PIC, LPA/LPI

AMReX

Containers, Communication,
Portability, Utilities

MPI CUDA, OpenMP, SYCL, HIP

Diagnostics
I/O

code coupling

ADIO
S2

HD
F5

Lin.
Alg.

BLAS++
LAPACK++

Asc
ent.

.

.

Python: Modules, PICMI interface, Workflows

ZFP
VTK
-m

openPMD

PICSAR
QED Modules

FFT

on- or 
multi- 
device

ABLASTR library: common PIC physics

ARTEMIS
microelectronics

ImpactX
accelerator 

lattice design

Desktop
to

HPC

HiPACE++
quasi-static, PWFA

Object-Level 
Python Bindings
extensible, AI/ML

pyAMReX



▪ BLAST: Beam pLasma 
Accelerator Simulation Toolkit

▪ IO, Standardization & Open 
Development

▪ HPC: The Exascale Computing 
Project and Beyond



We Standardize & Develop Scalable Data Methods

Start-to-end accelerator modeling requires
data compatibility and control usability



Particle-In-Cell
Modeling Interface

open Particle Mesh 
Data standard

Code A

Code B

...

We Standardize & Develop Scalable Data Methods

Start-to-end accelerator modeling requires
data compatibility and control usability
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Consortium for Advanced Modeling 
of Particle Accelerators

DOE HEP GARD - now DOE SciDAC-5

Particle-In-Cell
Modeling Interface

open Particle Mesh 
Data standard

Code A

Code B

...

We Standardize & Develop Scalable Data Methods
C

om
m

un
iti

es
Start-to-end accelerator modeling requires
data compatibility and control usability
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openPMD: Open Standard for Particle-Mesh Data

● markup / schema for arbitrary

hierarchical data formats

● truly, scientifically

self-describing

● basis for open data workflows

openPMD standard (1.0.0, 1.0.1, 1.1.0)
the underlying file markup and definition
A Huebl et al., DOI:10.5281/zenodo.33624
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openPMD: Open Standard for Particle-Mesh Data

● markup / schema for arbitrary

hierarchical data formats

● truly, scientifically

self-describing

● basis for open data workflows

openPMD standard (1.0.0, 1.0.1, 1.1.0)
the underlying file markup and definition
A Huebl et al., DOI:10.5281/zenodo.33624

base standard extensions
general description domain specific

wavefronts, particle species, particle beams,weighted 
particles, PIC, MD, mesh-refinement, CCD images, ...
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openPMD: Open Standard for Particle-Mesh Data

● markup / schema for arbitrary

hierarchical data formats

● truly, scientifically

self-describing

● basis for open data workflows

openPMD standard (1.0.0, 1.0.1, 1.1.0)
the underlying file markup and definition
A Huebl et al., DOI:10.5281/zenodo.33624

openPMD-viewer
quick visualization
explore, e.g., in Jupyter

openPMD-api
reference library
file-format agnostics API

openPMD-updater
auto-update to new standard, verify

openPMD-validator

base standard extensions
general description domain specific

wavefronts, particle species, particle beams,weighted 
particles, PIC, MD, mesh-refinement, CCD images, ...
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We Standardize & Develop Scalable Data Methods

… and integrate them for scientific productivity
including data analytics frameworks & graphical user interfaces
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We Standardize & Develop Scalable Data Methods

… and integrate them for scientific productivity
including data analytics frameworks & graphical user interfaces
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We Standardize & Develop Scalable Data Methods

… and integrate them for scientific productivity
including data analytics frameworks & graphical user interfaces

Open standardization, i.e. openPMD, makes us flexible for I/O 
libraries, tooling & domain-science needs.



▪ BLAST: Beam pLasma 
Accelerator Simulation Toolkit

▪ IO, Standardization & Open 
Development

▪ HPC: The Exascale Computing 
Project and Beyond
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WarpX: Runs Efficiently on the First Exascale Supercomputer

April-July 2022: ran on world’s largest HPCs
L. Fedeli, A. Huebl et al., accepted in SC’22, 2022

Demonstrated scaling 4-5 orders of magnitude

Note: Perlmutter & Frontier are pre-acceptance!
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WarpX: Runs Efficiently on the First Exascale Supercomputer

April-July 2022: ran on world’s largest HPCs
L. Fedeli, A. Huebl et al., accepted in SC’22, 2022

Demonstrated scaling 4-5 orders of magnitude Figure-of-Merit over time

11
0x

Note: Perlmutter & Frontier are pre-acceptance!
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GPU Computing at Scale Requires Advanced Load Balancing
do

m
ai

n 
de

co
m

po
si

tio
n

ex
am

pl
e:

Application Challenges
• Plasma Mirrors & Laser-Ion

Acceleration: moving front
• Laser Wakefield Accelerator:

Injected Beam Particles

M. Rowan, A. Huebl, K. Gott, R. Lehe, M. Thévenet, J. Deslippe, J.-L. Vay, “In-Situ Assessment of Device-Side Compute Work for Dynamic 
Load Balancing in a GPU-Accelerated PIC Code,” PASC21, DOI:10.1145/3468267.3470614 (2021)

https://doi.org/10.1145/3468267.3470614
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GPU Computing at Scale Requires Advanced Load Balancing
do
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Application Challenges
• Plasma Mirrors & Laser-Ion

Acceleration: moving front
• Laser Wakefield Accelerator:

Injected Beam Particles

M. Rowan, A. Huebl, K. Gott, R. Lehe, M. Thévenet, J. Deslippe, J.-L. Vay, “In-Situ Assessment of Device-Side Compute Work for Dynamic 
Load Balancing in a GPU-Accelerated PIC Code,” PASC21, DOI:10.1145/3468267.3470614 (2021)

In Situ Cost Analysis
• basis for distribution functions
• realistic cost: kernel timing

Result: 3.8x speedup!
• production-quality, easy-to-use
• larger simulation: mitigate local memory spikes

https://doi.org/10.1145/3468267.3470614
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  Novel Visualization Techniques

Particle Adaptive Sampling
• emphasis on “uncommon” properties
• inverse sampling to incidence of a property

ALPINE:                                 Biswas, Larsen, Lo

A. Biswas et al., “In Situ Data-Driven Adaptive Sampling for 
Large-scale Simulation Data Summarization,” ISAV18 @SC18 (2018)
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  Novel Visualization Techniques

Particle Adaptive Sampling
• emphasis on “uncommon” properties
• inverse sampling to incidence of a property

Yenpure, Childs, Pugmire

Physics-Informed Flow Tracelines
• traditional flow vis. depends only on local field values
• plasma particles:

○ inert: track relativistic momentum on a traceline
○ Lorentz-Force: 6 fields (electromag.), leap-frog

• chance to significantly reduce particle I/O in real-life 
workflows through savings on temporal fidelity

ALPINE:                                 Biswas, Larsen, Lo

A. Biswas et al., “In Situ Data-Driven Adaptive Sampling for 
Large-scale Simulation Data Summarization,” ISAV18 @SC18 (2018)
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Postdocs Welcome - Come work with us!

jobs.lbl.gov/jobs/search/3151872

• Modeling & Theory
– Exascale & Wakefields 

#92244

– Beam Dynamics & ML 
#96603

• Experiment
– Wakefields, kHz-MHz (LPA)

#96321 #93729

– Laser-Proton/Ion (LPI) 
#95498

https://jobs.lbl.gov/jobs/search/3151872
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Summary

▪ BLAST is an open suite of PIC codes for particle accelerator modeling,
increasingly build on top of the AMReX library, using code-sharing through
the ABLASTR library and leveraging the U.S. DOE Exascale software stack.
ECP WarpX is our first Exascale app, for relativistic plasma & beam modeling;
ImpactX enhances these developments with AI/ML for s-based beam dynamics.

▪ AMReX for CPU/GPU Mesh-Refinement, ABLASTR shares PIC methods
▪ Portable CPU/GPU frameworks that avoid code duplication
▪ Efficient data structures, memory & comms.
▪ Reuse numerical methods in various PIC loops

github.com/ECP-WarpX

presented by: Axel Huebl (LBNL)
 📧 axelhuebl@lbl.gov

WarpX: longitudinal electric field 
in a laser-plasma accelerator

rendered with Ascent & VTK-m

▪ Vibrant Ecosystem and Contributions
▪ Runs on any platform: Linux, macOS, Windows
▪ Specialized codes & advanced physics modules (QED, collisions, ionization, …)
▪ Advanced computer science research (load-balancing, I/O, visualization, ...)
▪ Public development, automated testing, review & documentation
▪ Friendly, open & helpful community

LDRD




