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Overview



▪ Structure-based wakefield acceleration
– Acceleration of a witness beam using wakefield excited by a drive beam
– Two schemes:

• Collinear wakefield acceleration (CWA)
• Two-beam acceleration (TBA)

▪ Short-pulse SWFA → Higher gradients
– RF breakdown rate (BDR) ∝ 𝐸30𝑡𝑝
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• Short RF pulses ~O(ns) → lower BDR

4

Structure-Based Wakefield Acceleration (SWFA)



▪ An artificial material with a subwavelength 
unit cells

▪ Unit cell designs could lead to exotic EM 
properties 

▪ Double-negative MTMs: 𝜀, 𝜇 < 0
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Metamaterial (MTM)

Metamaterial with split 
ring resonators on PC 

Boards

Reverse
Cherenkov 
Radiation

Cherenkov 
Radiation



▪ SWFA with ~O(ns) pulse length has special requirements 
for wakefield structures
– High gradient at transient state (short pulse) vs. at 

steady state (with long pulses) 
– Tradeoff between shunt impedance and group 

velocity
▪ Advanced structures are needed
▪ Metamaterial structures are promising from:

– Strong beam-wave interaction due to the 
subwavelength feature

– Large parameter space for optimization
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MTM Advantages for SWFA 
Other advanced 

structures
studied at AWA



▪ Previous work: Series of MTM X-band power 
extractor experiments
– Highest power: 565 MW peak power 

extracted from the AWA drive beam

▪ This work: First demonstration of an MTM 
accelerating structure
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This Work vs. Previous Work on MTM Structures

565 MW peak 
power measured 

at 11.7 GHz
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Experimental Setup
▪ Phase I high-power test of the 

MTM accelerating structure
– RF in: Up to 500 MW of 

peak power extracted from 
a ~500 nC 8-bunch train by 
a metallic disk-loaded PETS

▪ High-gradient operation of the 
MTM accelerating structure

Metallic
disk-loaded 

PETS
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Unit Cell Design
▪ “Wagon wheel” MTM unit cell 

designed at 11.7 GHz
– Cell period = 2 mm << RF 

wavelength
▪ Fundamental TM01-like mode 

with a negative group velocity
▪ Tradeoff between high gradient at 

the steady state & short fill time 
required by ns-long input pulses

Structure 
Plate

Spacer 
Plate

Dispersion curve
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Full Structure Design: Frequency Response

𝑆21 optimized 
around 11.7 GHz

▪ 6 unit-cell w/ couplers
– Signal transmission optimized 

around 11.7 GHz
▪ Short input pulse → decent 

bandwidth required while 
achieving a high gradient

Vacuum 
section
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Full Structure Design: 
Time Response

On-axis 
gradient

▪ Input pulse from disk-loaded, 
metallic PETS

▪ High gradient over 300 MV/m 
achieved with 500 MW peak 
power

Input voltage 
FFT 

Input voltage 
pulse
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Mechanical Design and Structure Fabrication

Brazeless
structure
▪ 6 unit cells
▪ No tuning 

required

MTM plates
electropolished
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Cold Test
▪ Good agreement between cold test and 

simulation
– S parameters
– Dispersion relation from bead pull 

measurement

𝑆21 from Cold Test

Dispersion Curve from Cold Test



14

Phase I: Breakdown Test
▪ Phase I high-power test of the MTM accelerating structure

– Breakdown diagnostics at high gradients



15

Future: MTMs for Two-Beam Acceleration at AWA
Two MTM structures → One power extracting structure & One accelerator structure
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Conclusions
▪ MTMs show promise as structures for short RF pulse SWFA

– Mitigate limitations in conventional structures
▪ An 11.7 GHz MTM accelerating structure designed

– Expected gradient > 300 MV/m with 500 MW, 3 ns input pulses extracted from 
a wakefield power extractor

▪ Structure fabrication and cold test completed
– Cold test results show good agreement with simulations

▪ Future
– High gradient test with breakdown diagnostics at AWA (this year)
– MTM-based two-beam acceleration demonstration



Questions?



BACKUP
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MTM Power Extractors
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Highest Power Extracted in SWFA
▪ Series of MTM X-band power extractor experiments starting from 2018

– Drive beam: 65 MeV,  a train of 8 bunches, total charge 355 nC 
– Highest power: 565 MW peak power at 11.7 GHz (2021 experiments)

565 MW peak power measured

J. Picard, et al., PRAB 25, 051301 (2022)
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MTM Accelerating Structure
▪ Design based on output from X-band metallic disk-loaded PETS

– 500 MW of peak power extracted from a ~500 nC 8-bunch train

Metallic
disk-loaded 

PETS
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MTM Accelerating Structure
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Future Experiment
▪ Phase I high-power test of the 

MTM accelerating structure
– Breakdown diagnostics at 

high gradients
– No witness beam in 

structure in the coming 
Phase I experiment

▪ Longer-term future experiment:
– Full demonstration: MTM-

based TBA


