North American Particle Accelerator Conference (NAPAC22)

Design, Fabrication, & Cold Test of a Metamaterial Wakefield Accelerating Structure

Dillon Merenich¹, Xueying Lu^{1,2}, Scott Doran², John Power²

¹Northern Illinois University (NIU) ²Argonne National Laboratory (ANL)

August 10, 2022

Acknowledgements

- AWA.
 - Charles Whiteford
 - Chunguang Jing
 - Eric Wisniewski
 - Gongxiaohui Chen
 - Jiahang Shao
 - Philippe Piot
 - Seongyeol Kim
 - Wanming Liu

- ANL Central Machine Shop
 - Doug Carvelli
 - Jim Korienek
 - John Conway
 - Mark Rooney
 - William Toter
 - Argonne

- DOE Office of Science, Office of High **Energy Physics**
 - NIU (ECA): DE-SC0021928
 - CAST Traineeship: DE-SC0020379
 - AWA: DE-AC02-06CH11357

NIU:

UCHICAGO

Brendan Leung

Overview

- Introduction
 - Structure-based wakefield acceleration (SWFA)
 - Metamaterial (MTM) structures for SWFA
- Design of an MTM accelerating structure
- Structure fabrication
- Cold test
- Future work
 - High-gradient breakdown tests for future two-beam acceleration
- Conclusions

Structure-Based Wakefield Acceleration (SWFA)

- Structure-based wakefield acceleration
 - Acceleration of a witness beam using wakefield excited by a drive beam
 - Two schemes:
 - Collinear wakefield acceleration (CWA)
 - Two-beam acceleration (TBA)
- Short-pulse SWFA → Higher gradients
 - RF breakdown rate (BDR) $\propto E^{30}t_p^5$
 - Short RF pulses $\sim O(ns) \rightarrow \text{lower BDR}$

Metamaterial (MTM)

- An artificial material with a subwavelength unit cells
- Unit cell designs could lead to exotic EM properties
- Double-negative MTMs: ε , $\mu < 0$

Metamaterial with split ring resonators on PC Boards

MTM Advantages for SWFA

- SWFA with ~O(ns) pulse length has special requirements for wakefield structures
 - High gradient at transient state (short pulse) vs. at steady state (with long pulses)
 - Tradeoff between shunt impedance and group velocity
- Advanced structures are needed
- Metamaterial structures are promising from:
 - Strong beam-wave interaction due to the subwavelength feature
 - Large parameter space for optimization

This Work vs. Previous Work on MTM Structures

- Previous work: Series of MTM X-band power extractor experiments
 - Highest power: 565 MW peak power extracted from the AWA drive beam

 This work: First demonstration of an MTM accelerating structure

UCHICAGO ARGONNELLC U.S. DEPARTMENT OF U.S. Department of Energy laboratory is a U.S. Department of Energy laboratory U.S. Department of Energy laboratory Interview (Lago Argonne, Luc

Two-Beam Acceleration

Experimental Setup

- Phase I high-power test of the MTM accelerating structure
 - RF in: Up to 500 MW of peak power extracted from a ~500 nC 8-bunch train by a metallic disk-loaded PETS
- High-gradient operation of the MTM accelerating structure

Unit Cell Design

- "Wagon wheel" MTM unit cell designed at 11.7 GHz
 - Cell period = 2 mm << RF wavelength
- Fundamental TM₀₁-like mode with a negative group velocity
- Tradeoff between high gradient at the steady state & short fill time required by ns-long input pulses

Full Structure Design: Frequency Response

- 6 unit-cell w/ couplers
 - Signal transmission optimized around 11.7 GHz
- Short input pulse \rightarrow decent bandwidth required while achieving a high gradient

Full Structure Design: Time Response

- Input pulse from disk-loaded, metallic PETS
- High gradient over 300 MV/m achieved with 500 MW peak power

Mechanical Design and Structure Fabrication

MTM plates electropolished

Brazeless structure

- 6 unit cells
- No tuning required

Z

Cold Test

- Good agreement between cold test and simulation
 - S parameters
 - Dispersion relation from bead pull measurement

Ø

Phase I: Breakdown Test

- Phase I high-power test of the MTM accelerating structure
 - Breakdown diagnostics at high gradients

Future: MTMs for Two-Beam Acceleration at AWA

Two MTM structures → One power extracting structure & One accelerator structure

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by Uchicago Argonne, LLC.

Conclusions

- MTMs show promise as structures for short RF pulse SWFA
 - Mitigate limitations in conventional structures
- An 11.7 GHz MTM accelerating structure designed
 - Expected gradient > 300 MV/m with 500 MW, 3 ns input pulses extracted from a wakefield power extractor
- Structure fabrication and cold test completed
 - Cold test results show good agreement with simulations
- Future
 - High gradient test with breakdown diagnostics at AWA (this year)
 - MTM-based two-beam acceleration demonstration

BACKUP

MTM Power Extractors

Highest Power Extracted in SWFA

- Series of MTM X-band power extractor experiments starting from 2018
 - Drive beam: 65 MeV, a train of 8 bunches, total charge 355 nC
 - Highest power: 565 MW peak power at 11.7 GHz (2021 experiments)

MTM Accelerating Structure

- Design based on output from X-band metallic disk-loaded PETS
 - 500 MW of peak power extracted from a ~500 nC 8-bunch train

MTM Accelerating Structure

Future Experiment

- Phase I high-power test of the MTM accelerating structure
 - Breakdown diagnostics at high gradients
 - No witness beam in structure in the coming Phase I experiment
- Longer-term future experiment:
 - Full demonstration: MTMbased TBA

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

UCHICAGO

ARGONNE

23