Author: Hall, T.W.
Paper Title Page
TUPA52 Initial Results of the 201.25 MHz Coaxial Window Test Stand 458
  • T.W. Hall, J.T.M. Lyles, A. Poudel, A.S. Waghmare
    LANL, Los Alamos, New Mexico, USA
  We have recently commissioned an RF window test stand for the Drift Tube Linear Accelerator (DTL) portion of the Los Alamos Neutron Science Center (LANSCE). The window test stand consists of two RF windows that create a vacuum chamber which allows the windows to be tested to the peak power levels used in the DTL. Initial results clearly indicated multipactoring due to the increase of pressure at specific regions of peak forward power levels. Temperature measured at various azimuthal locations on both windows showed increased multipactor heating on the downstream window versus the upstream window. We present the effect of the titanium nitride coating that is presently applied to windows on both multipactor and window temperature. These results are discussed with respect to their impact on the LANSCE DTL performance.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA52  
About • Received ※ 25 July 2022 — Revised ※ 04 August 2022 — Accepted ※ 05 August 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPA59 RF System Upgrade for Low Energy DTL Cavity at LANSCE 478
  • J.T.M. Lyles, R.E. Bratton, T.W. Hall, M. Sanchez Barrueta
    LANL, Los Alamos, New Mexico, USA
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract 89233218CNA000001.
The Los Alamos Neutron Science Center (LANSCE) 100-MeV Drift Tube Linac (DTL) uses four accelerating cavities. In May of 2021, a new RF amplifier system was commissioned to drive the first 4-MeV cavity. It had been powered for 30 years with a triode vacuum tube RF amplifier driven by a tetrode, along with four more vacuum tubes for anode high-voltage modulation. The new amplifier system uses one tetrode amplifier driven by a 20-kW solid state amplifier (SSA) to generate 400 kWp at 201.25 MHz. The tetrode amplifier is protected for reflected power from the DTL by a coaxial circulator. The new installation includes cRio controls and a fast protection and monitoring system capable of reacting to faults within 10 µs. A new digital low-level RF (LLRF) system has been installed that integrates I/Q signal processing, PI feedback, and feedforward controls for beam loading compensation. Issues with LLRF stability were initially encountered due to interaction from thermal-related RF phase changes. After these issues were solved, the final outcome has been a reliable new RF system to complete the overall upgrade of the LANSCE DTL RF power plant.
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA59  
About • Received ※ 03 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPA75 High Gradient Testing Results of the Benchmark a/λ=0.105 Cavity at CERF-NM 505
  • M.R.A. Zuboraj, D.V. Gorelov, T.W. Hall, M.E. Middendorf, D. Rai, E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
  Funding: This work was supported by Los Alamos National Laboratory’s Laboratory Directed Research and Development (LDRD) Program.
This presentation will report initial results of high gradient testing of two C-band accelerating cavities fabricated at Los Alamos National Laboratory (LANL). At LANL, we commissioned a C-band Engineering Research Facility of New Mexico (CERF-NM) which has unique capability of conditioning and testing accelerating cavities for operation at surface electric fields at the excess of 300 MV/m, powered by a 50 MW, 5.712 GHz Canon klystron. Recently, we fabricated and tested two benchmark copper cavities at CERF-NM. These cavities establish a benchmark for high gradient performance at C-band and the same geometry will be used to provide direct comparison between high gradient performance of cavities fabricated of different alloys and by different fabrication methods. The cavities consist of three cells with one high gradient central cell and two coupling cells on the sides. The ratio of the radius of the coupling iris to the wavelength is a/λ=0.105. This poster will report high gradient test results such as breakdown rates as function of peak surface electric and magnetic fields and pulse heating.
poster icon Poster TUPA75 [0.890 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA75  
About • Received ※ 05 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 01 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THYD3 Update on the Status of C-Band Research and Facilities at LANL 855
  • E.I. Simakov, A.M. Alexander, D.V. Gorelov, T.W. Hall, M.E. Middendorf, D. Rai, T. Tajima, M.R.A. Zuboraj
    LANL, Los Alamos, New Mexico, USA
  Funding: Los Alamos National Laboratory LDRD Program
We will report on the status of two C-band test facilities at Los Alamos National Laboratory (LANL): C-band Engineering Research Facility in New Mexico (CERF-NM), and Cathodes and Rf Interactions in Extremes (CARIE). Modern applications such as X-ray sources require accelerators with optimized cost of construction and operation, naturally calling for high-gradient acceleration. At LANL we commissioned a high gradient test stand powered by a 50 MW, 5.712 GHz Canon klystron. CERF-NM is the first high gradient C-band test facility in the United States. It was fully commissioned in 2021. In the last year, multiple C-band high gradient cavities and components were tested at CERF-NM. Currently we work to implement several updates to the test stand including the ability to remotedly operate at high gradient for the round-the-clock high gradient conditioning. Adding capability to operate at cryogenic temperatures is considered. The construction of CARIE will begin in October of 2022. CARIE will house a cryo-cooled copper RF photoinjector with a high quantum-efficiency cathode and a high gradient accelerator section.
slides icon Slides THYD3 [3.331 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-THYD3  
About • Received ※ 31 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)