Author: Snopok, P.
Paper Title Page
MOPA64 Circular Modes for Mitigating Space-Charge Effects and Enabling Flat Beams 189
 
  • O. Gilanliogullari
    IIT, Chicago, Illinois, USA
  • B. Mustapha
    ANL, Lemont, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357
Flat beams are preferred in high-intensity accelerators and high-energy colliders due to one of the transverse plane emittances being smaller, which enhances luminosity and beam brightness. However, flat beams are devastating at low energies due to space charge forces which are significantly enhanced in one plane. The same is true, although to a lesser degree, for non-symmetric elliptical beams. In order to mitigate this effect, circular mode beam optics can be used. In this paper, we show that circular mode beams dilute space charge effects at lower energies, and can be transformed to flat beams later on.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA64  
About • Received ※ 09 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA66 Hadron Monitor Calibration System for NuMI 193
 
  • N.L. Muldrow
    IIT, Chicago, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  Funding: CAST Fellowship
NuMI (Neutrinos at Main Injector) beamline at Fermi National Accelerator Laboratory provides neutrinos to various neutrino experiments. The hadron monitor consisting of a 5 by 5 array of ionization chambers is part of the diagnostics for the beamline. In order to calibrate the hadron monitor, a gamma source is needed. We present the status and progress of the development of the calibration system for the hadron monitor. The system based on Raspberry Pi controlled CNC system, motors, and position sensors would allow us to place the gamma source precisely to calibrate the signal gain of individual pixels. The ultimate outcome of the study is a prototype of the calibration system.
 
poster icon Poster MOPA66 [2.300 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA66  
About • Received ※ 18 July 2022 — Accepted ※ 12 August 2022 — Issue date ※ 05 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)