Keyword: beam-losses
Paper Title Other Keywords Page
MOPA28 Semantic Regression for Disentangling Beam Losses in the Fermilab Main Injector and Recycler operation, real-time, distributed, proton 112
  • M. Thieme, H. Liu, S. Memik, R. Shi
    Northwestern University, Evanston, Illinois, USA
  • J.M.S. Arnold, M.R. Austin, P.M. Hanlet, K.J. Hazelwood, M.A. Ibrahim, V.P. Nagaslaev, A. Narayanan, D.J. Nicklaus, G. Pradhan, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  Funding: Operated by Fermi Research Alliance, LLC under Contract No.De-AC02-07CH11359 with the United States Department of Energy. Additional funding provided by Grant Award No. LAB 20-2261, Batavia, IL USA
Fermilab’s Main Injector enclosure houses two accelerators: the Main Injector (MI) and the Recycler (RR). In periods of joint operation, when both machines contain high intensity beam, radiative beam losses from MI and RR overlap on the enclosure’s beam loss monitoring (BLM) system, making it difficult to attribute those losses to a single machine. Incorrect diagnoses result in unnecessary downtime that incurs both financial and experimental cost. In this work, we introduce a novel neural approach for automatically disentangling each machine’s contributions to those measured losses. Using a continuous adaptation of the popular UNet architecture in conjunction with a novel data augmentation scheme, our model accurately infers the machine of origin on a per-BLM basis in periods of joint and independent operation. Crucially, by extracting beam loss information at varying receptive fields, the method is capable of learning both local and global machine signatures and producing high quality inferences using only raw BLM loss measurements.
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA28  
About • Received ※ 02 August 2022 — Revised ※ 05 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)